Noelia Muñoz-Martín, Ana Simon-Chica, Covadonga Díaz-Díaz, Vanessa Cadenas, Susana Temiño, Isaac Esteban, Andreas Ludwig, Barbara Schormair, Juliane Winkelmann, Veronika Olejnickova, David Sedmera, David Filgueiras-Rama, Miguel Torres
{"title":"Meis transcription factors regulate cardiac conduction system development and adult function.","authors":"Noelia Muñoz-Martín, Ana Simon-Chica, Covadonga Díaz-Díaz, Vanessa Cadenas, Susana Temiño, Isaac Esteban, Andreas Ludwig, Barbara Schormair, Juliane Winkelmann, Veronika Olejnickova, David Sedmera, David Filgueiras-Rama, Miguel Torres","doi":"10.1093/cvr/cvae258","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>The Cardiac Conduction System (CCS) is progressively specified during development by interactions among a discrete number of Transcriptions Factors that ensure its proper patterning and the emergence of its functional properties. Meis genes encode homeodomain transcription factors (TFs) with multiple roles in mammalian development. In humans, Meis genes associate with congenital cardiac malformations and alterations of cardiac electrical activity, however the basis for these alterations has not been established. Here we studied the role of Meis transcription factors in cardiomyocyte development and function during mouse development and adult life.</p><p><strong>Methods and results: </strong>We studied Meis1 and Meis2 conditional deletion mouse models that allowed cardiomyocyte-specific elimination of Meis function during development and inducible elimination of Meis function in cardiomyocytes of the adult CCS. We studied cardiac anatomy, contractility and conduction. We report that Meis factors are global regulators of cardiac conduction, with a predominant role in the CCS. While constitutive Meis deletion in cardiomyocytes led to congenital malformations of the arterial pole and atria, as well as defects in ventricular conduction, Meis elimination in cardiomyocytes of the adult CCS produced sinus node dysfunction and delayed atrio-ventricular conduction. Molecular analyses unraveled Meis-controlled molecular pathways associated with these defects. Finally, we studied in transgenic mice the activity of a Meis1 human enhancer related to an SNP associated by GWAS to PR elongation and found that the transgene drives expression in components of the atrio-ventricular conduction system.</p><p><strong>Conclusions: </strong>Our study identifies Meis TFs as essential regulators of the establishment of cardiac conduction function during development and its maintenance during adult life. In addition, we generated animal models and identified molecular alterations that will ease the study of Meis-associated conduction defects and congenital malformations in humans.</p>","PeriodicalId":9638,"journal":{"name":"Cardiovascular Research","volume":" ","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cvr/cvae258","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: The Cardiac Conduction System (CCS) is progressively specified during development by interactions among a discrete number of Transcriptions Factors that ensure its proper patterning and the emergence of its functional properties. Meis genes encode homeodomain transcription factors (TFs) with multiple roles in mammalian development. In humans, Meis genes associate with congenital cardiac malformations and alterations of cardiac electrical activity, however the basis for these alterations has not been established. Here we studied the role of Meis transcription factors in cardiomyocyte development and function during mouse development and adult life.
Methods and results: We studied Meis1 and Meis2 conditional deletion mouse models that allowed cardiomyocyte-specific elimination of Meis function during development and inducible elimination of Meis function in cardiomyocytes of the adult CCS. We studied cardiac anatomy, contractility and conduction. We report that Meis factors are global regulators of cardiac conduction, with a predominant role in the CCS. While constitutive Meis deletion in cardiomyocytes led to congenital malformations of the arterial pole and atria, as well as defects in ventricular conduction, Meis elimination in cardiomyocytes of the adult CCS produced sinus node dysfunction and delayed atrio-ventricular conduction. Molecular analyses unraveled Meis-controlled molecular pathways associated with these defects. Finally, we studied in transgenic mice the activity of a Meis1 human enhancer related to an SNP associated by GWAS to PR elongation and found that the transgene drives expression in components of the atrio-ventricular conduction system.
Conclusions: Our study identifies Meis TFs as essential regulators of the establishment of cardiac conduction function during development and its maintenance during adult life. In addition, we generated animal models and identified molecular alterations that will ease the study of Meis-associated conduction defects and congenital malformations in humans.
期刊介绍:
Cardiovascular Research
Journal Overview:
International journal of the European Society of Cardiology
Focuses on basic and translational research in cardiology and cardiovascular biology
Aims to enhance insight into cardiovascular disease mechanisms and innovation prospects
Submission Criteria:
Welcomes papers covering molecular, sub-cellular, cellular, organ, and organism levels
Accepts clinical proof-of-concept and translational studies
Manuscripts expected to provide significant contribution to cardiovascular biology and diseases