L-MAE: Longitudinal masked auto-encoder with time and severity-aware encoding for diabetic retinopathy progression prediction.

IF 7 2区 医学 Q1 BIOLOGY
Rachid Zeghlache, Pierre-Henri Conze, Mostafa El Habib Daho, Yihao Li, Alireza Rezaei, Hugo Le Boité, Ramin Tadayoni, Pascal Massin, Béatrice Cochener, Ikram Brahim, Gwenolé Quellec, Mathieu Lamard
{"title":"L-MAE: Longitudinal masked auto-encoder with time and severity-aware encoding for diabetic retinopathy progression prediction.","authors":"Rachid Zeghlache, Pierre-Henri Conze, Mostafa El Habib Daho, Yihao Li, Alireza Rezaei, Hugo Le Boité, Ramin Tadayoni, Pascal Massin, Béatrice Cochener, Ikram Brahim, Gwenolé Quellec, Mathieu Lamard","doi":"10.1016/j.compbiomed.2024.109508","DOIUrl":null,"url":null,"abstract":"<p><p>Pre-training strategies based on self-supervised learning (SSL) have demonstrated success as pretext tasks for downstream tasks in computer vision. However, while SSL methods are often domain-agnostic, their direct application to medical imaging is challenging due to the distinct nature of medical images, including specific anatomical and temporal patterns relevant to disease progression. Additionally, traditional SSL pretext tasks often lack the contextual knowledge that is essential for clinical decision support. In this paper, we developed a longitudinal masked auto-encoder (MAE) that builds on the Transformer-based MAE architecture, specifically introducing a time-aware position embedding and a disease progression-aware masking strategy. Unlike traditional sequential approaches, our method incorporates the actual time intervals between examinations, allowing for better capture of temporal trends. Furthermore, the masking strategy evolves in alignment with disease progression during follow-up exams to capture pathological changes, improving disease progression assessments. Using the OPHDIAT dataset, a large-scale longitudinal screening dataset for diabetic retinopathy (DR), we evaluated our pre-trained model by predicting the severity level at the next visit within three years, based on past examination series. Our findings demonstrate that both the time-aware position embedding and the disease progression-informed masking significantly enhance predictive accuracy. Compared to conventional baseline models and standard longitudinal Transformers, these simple yet effective adaptations substantially improve the predictive power of deep classification models in this domain.</p>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"185 ","pages":"109508"},"PeriodicalIF":7.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compbiomed.2024.109508","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pre-training strategies based on self-supervised learning (SSL) have demonstrated success as pretext tasks for downstream tasks in computer vision. However, while SSL methods are often domain-agnostic, their direct application to medical imaging is challenging due to the distinct nature of medical images, including specific anatomical and temporal patterns relevant to disease progression. Additionally, traditional SSL pretext tasks often lack the contextual knowledge that is essential for clinical decision support. In this paper, we developed a longitudinal masked auto-encoder (MAE) that builds on the Transformer-based MAE architecture, specifically introducing a time-aware position embedding and a disease progression-aware masking strategy. Unlike traditional sequential approaches, our method incorporates the actual time intervals between examinations, allowing for better capture of temporal trends. Furthermore, the masking strategy evolves in alignment with disease progression during follow-up exams to capture pathological changes, improving disease progression assessments. Using the OPHDIAT dataset, a large-scale longitudinal screening dataset for diabetic retinopathy (DR), we evaluated our pre-trained model by predicting the severity level at the next visit within three years, based on past examination series. Our findings demonstrate that both the time-aware position embedding and the disease progression-informed masking significantly enhance predictive accuracy. Compared to conventional baseline models and standard longitudinal Transformers, these simple yet effective adaptations substantially improve the predictive power of deep classification models in this domain.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信