Research trends on AI in breast cancer diagnosis, and treatment over two decades.

IF 2.8 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM
Alok Singh, Akanksha Singh, Sudip Bhattacharya
{"title":"Research trends on AI in breast cancer diagnosis, and treatment over two decades.","authors":"Alok Singh, Akanksha Singh, Sudip Bhattacharya","doi":"10.1007/s12672-024-01671-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Recently, the integration of Artificial Intelligence (AI) has significantly enhanced the diagnostic accuracy in breast cancer screening. This study aims to deliver an extensive review of the advancements in AI for breast cancer diagnosis and prognosis through a bibliometric analysis.</p><p><strong>Methodology: </strong>Therefore, this study gathered pertinent peer-reviewed research articles from the Scopus database, spanning the years 2000 to 2024. These articles were subsequently subjected to quantitative analysis and visualization through the Bibliometrix R package. Ultimately, potential areas for future research challenges were pinpointed.</p><p><strong>Results: </strong>This study analyzes the development of Artificial Intelligence (AI) research for breast cancer diagnosis and prognosis from 2000 to 2024, based on 2678 publications sourced from Scopus. A sharp rise in global publication trends is observed between 2018 and 2023, with 2023 producing 456 papers, indicating intensified academic focus. Leading contributors include ZHENG B, with 36 publications, and institutions like RADBOUD UNIVERSITY MEDICAL CENTER and the IEO EUROPEAN INSTITUTE OF ONCOLOGY IRCCS. The USA leads both in publications (473) and total citations (18,530), followed by India with 289 papers. Co-occurrence analysis shows that \"mammography\" (3171 occurrences) and \"artificial intelligence\" (1691 occurrences) are among the most frequent keywords, reflecting core themes. Co-citation network analysis identifies foundational works by authors like Lecun Y. and Simonyan K. in advancing AI applications in breast cancer. Institutional and country-level collaboration analysis reveals the USA's significant partnerships with China, the UK, and Canada, driving the global research agenda in this field.</p><p><strong>Conclusion: </strong>In conclusion, this bibliometric review underscores the growing influence of AI, particularly deep learning, in breast cancer diagnosis and treatment research from 2000 to 2024. The United States leads the field in publications and collaborations, with India, Spain, and the Netherlands also making significant contributions. Key institutions and journals have driven advancements, with AI applications focusing on improving diagnostic imaging and early detection. However, challenges like data limitations, regulatory hurdles, and unequal global collaboration persist, requiring further interdisciplinary efforts to enhance AI integration in clinical practice.</p>","PeriodicalId":11148,"journal":{"name":"Discover. Oncology","volume":"15 1","pages":"772"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover. Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12672-024-01671-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Recently, the integration of Artificial Intelligence (AI) has significantly enhanced the diagnostic accuracy in breast cancer screening. This study aims to deliver an extensive review of the advancements in AI for breast cancer diagnosis and prognosis through a bibliometric analysis.

Methodology: Therefore, this study gathered pertinent peer-reviewed research articles from the Scopus database, spanning the years 2000 to 2024. These articles were subsequently subjected to quantitative analysis and visualization through the Bibliometrix R package. Ultimately, potential areas for future research challenges were pinpointed.

Results: This study analyzes the development of Artificial Intelligence (AI) research for breast cancer diagnosis and prognosis from 2000 to 2024, based on 2678 publications sourced from Scopus. A sharp rise in global publication trends is observed between 2018 and 2023, with 2023 producing 456 papers, indicating intensified academic focus. Leading contributors include ZHENG B, with 36 publications, and institutions like RADBOUD UNIVERSITY MEDICAL CENTER and the IEO EUROPEAN INSTITUTE OF ONCOLOGY IRCCS. The USA leads both in publications (473) and total citations (18,530), followed by India with 289 papers. Co-occurrence analysis shows that "mammography" (3171 occurrences) and "artificial intelligence" (1691 occurrences) are among the most frequent keywords, reflecting core themes. Co-citation network analysis identifies foundational works by authors like Lecun Y. and Simonyan K. in advancing AI applications in breast cancer. Institutional and country-level collaboration analysis reveals the USA's significant partnerships with China, the UK, and Canada, driving the global research agenda in this field.

Conclusion: In conclusion, this bibliometric review underscores the growing influence of AI, particularly deep learning, in breast cancer diagnosis and treatment research from 2000 to 2024. The United States leads the field in publications and collaborations, with India, Spain, and the Netherlands also making significant contributions. Key institutions and journals have driven advancements, with AI applications focusing on improving diagnostic imaging and early detection. However, challenges like data limitations, regulatory hurdles, and unequal global collaboration persist, requiring further interdisciplinary efforts to enhance AI integration in clinical practice.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Discover. Oncology
Discover. Oncology Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
2.40
自引率
9.10%
发文量
122
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信