ACKR1hiECs Promote Aortic Dissection Through Adjusting Macrophage Behavior.

IF 16.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Yayu Wang, Xiong Jia, Yifei Zhang, Bin Zhang, Yazhe Zhou, Xiaoru Li, Xiaoying Zhu, Jinquan Xia, Jun Ren, Chang Zou, Qijun Zheng
{"title":"ACKR1<sup>hi</sup>ECs Promote Aortic Dissection Through Adjusting Macrophage Behavior.","authors":"Yayu Wang, Xiong Jia, Yifei Zhang, Bin Zhang, Yazhe Zhou, Xiaoru Li, Xiaoying Zhu, Jinquan Xia, Jun Ren, Chang Zou, Qijun Zheng","doi":"10.1161/CIRCRESAHA.124.325458","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Type A aortic dissection (TAAD) is a life-threatening condition characterized by complex pathophysiology, in which macrophages play a critical but not yet fully understood role. This study focused on the role of endothelial cells with elevated expression of ACKR1 (atypical chemokine receptor 1) and their interaction with proinflammatory macrophages in TAAD development.</p><p><strong>Methods and results: </strong>Single-cell transcriptomic analysis of human aortic tissues revealed increased populations of endothelial cells exhibiting high ACKR1 expression and proinflammatory macrophages in TAAD samples. Both clinical and animal studies revealed that ACKR1 expression levels were strongly linked to TAAD severity. Gain- and loss-of-function studies demonstrated that ACKR1 promotes TAAD progression. Specific knockdown of ACKR1 in endothelial cells suppressed the NF-κB (nuclear factor-κB) signaling pathway and SPP1 (secreted phosphoprotein 1) expression, leading to reduced macrophage migration and proinflammatory polarization, which subsequently inhibited TAAD development. Conversely, ACKR1 overexpression accelerated TAAD progression. Notably, molecular docking and comprehensive evaluation identified amikacin as a potential novel modulator of ACKR1. Extensive in vitro and in vivo studies demonstrated that amikacin can regulate macrophage behavior through the ACKR1/NF-κB/SPP1 signaling pathway, thereby attenuating TAAD progression and improving survival rates in TAAD mice.</p><p><strong>Conclusions: </strong>This study reveals how endothelial cells exhibiting high ACKR1 expression modulate macrophage migration and proinflammatory polarization through the ACKR1/NF-κB/SPP1 signaling pathway, a crucial mechanism in TAAD progression. Targeting ACKR1 through both functional and pharmacological approaches effectively suppressed TAAD progression and extended survival in TAAD mice, offering promising new intervention strategies for clinical evaluation.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":""},"PeriodicalIF":16.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCRESAHA.124.325458","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Type A aortic dissection (TAAD) is a life-threatening condition characterized by complex pathophysiology, in which macrophages play a critical but not yet fully understood role. This study focused on the role of endothelial cells with elevated expression of ACKR1 (atypical chemokine receptor 1) and their interaction with proinflammatory macrophages in TAAD development.

Methods and results: Single-cell transcriptomic analysis of human aortic tissues revealed increased populations of endothelial cells exhibiting high ACKR1 expression and proinflammatory macrophages in TAAD samples. Both clinical and animal studies revealed that ACKR1 expression levels were strongly linked to TAAD severity. Gain- and loss-of-function studies demonstrated that ACKR1 promotes TAAD progression. Specific knockdown of ACKR1 in endothelial cells suppressed the NF-κB (nuclear factor-κB) signaling pathway and SPP1 (secreted phosphoprotein 1) expression, leading to reduced macrophage migration and proinflammatory polarization, which subsequently inhibited TAAD development. Conversely, ACKR1 overexpression accelerated TAAD progression. Notably, molecular docking and comprehensive evaluation identified amikacin as a potential novel modulator of ACKR1. Extensive in vitro and in vivo studies demonstrated that amikacin can regulate macrophage behavior through the ACKR1/NF-κB/SPP1 signaling pathway, thereby attenuating TAAD progression and improving survival rates in TAAD mice.

Conclusions: This study reveals how endothelial cells exhibiting high ACKR1 expression modulate macrophage migration and proinflammatory polarization through the ACKR1/NF-κB/SPP1 signaling pathway, a crucial mechanism in TAAD progression. Targeting ACKR1 through both functional and pharmacological approaches effectively suppressed TAAD progression and extended survival in TAAD mice, offering promising new intervention strategies for clinical evaluation.

ACKR1hiECs 通过调整巨噬细胞行为促进主动脉夹层的形成
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Circulation research
Circulation research 医学-外周血管病
CiteScore
29.60
自引率
2.00%
发文量
535
审稿时长
3-6 weeks
期刊介绍: Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies. Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities. In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field. Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信