Alexander S Tatikolov, Pavel G Pronkin, Ina G Panova
{"title":"Bilirubin: Photophysical and photochemical properties, phototherapy, analytical methods of measurement. A short review.","authors":"Alexander S Tatikolov, Pavel G Pronkin, Ina G Panova","doi":"10.1016/j.bpc.2024.107378","DOIUrl":null,"url":null,"abstract":"<p><p>Bilirubin, a yellow bile pigment, plays an important role in the body, being a potent antioxidant and having anti-inflammatory, immunomodulatory, cytoprotective, and neuroprotective functions. This makes bilirubin promising as a therapeutic and diagnostic agent in biomedicine. However, excess bilirubin is toxic and should be removed from the body. Bilirubin exhibits photochemical activity, which has been the subject of numerous studies up to now. Such studies are relevant because the bilirubin photochemistry provides the basis for bilirubin removing in phototherapy of neonatal jaundice (neonatal hyperbilirubinemia) and for some therapeutic applications. Furthermore, it can model several elementary processes of molecular photonics. In particular, the bilirubin molecule is capable of ultrafast Z-E photoisomerization and contains two almost identical dipyrromethenone chromophores capable of exciton coupling. The present review considers the data on the photophysical and photochemical properties of bilirubin and ultrafast routes of its phototransformations, as well as its photochemical reactions in phototherapy of neonatal hyperbilirubinemia and the ways to decrease the possible adverse effects of the phototherapy. The main analytical methods of bilirubin measurement in biological systems are also viewed.</p>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"318 ","pages":"107378"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpc.2024.107378","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bilirubin, a yellow bile pigment, plays an important role in the body, being a potent antioxidant and having anti-inflammatory, immunomodulatory, cytoprotective, and neuroprotective functions. This makes bilirubin promising as a therapeutic and diagnostic agent in biomedicine. However, excess bilirubin is toxic and should be removed from the body. Bilirubin exhibits photochemical activity, which has been the subject of numerous studies up to now. Such studies are relevant because the bilirubin photochemistry provides the basis for bilirubin removing in phototherapy of neonatal jaundice (neonatal hyperbilirubinemia) and for some therapeutic applications. Furthermore, it can model several elementary processes of molecular photonics. In particular, the bilirubin molecule is capable of ultrafast Z-E photoisomerization and contains two almost identical dipyrromethenone chromophores capable of exciton coupling. The present review considers the data on the photophysical and photochemical properties of bilirubin and ultrafast routes of its phototransformations, as well as its photochemical reactions in phototherapy of neonatal hyperbilirubinemia and the ways to decrease the possible adverse effects of the phototherapy. The main analytical methods of bilirubin measurement in biological systems are also viewed.
期刊介绍:
Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.