Junwei Luo, Jiaojiao Wang, Jingjing Wei, Chaokun Yan, Huimin Luo
{"title":"DeepHapNet: a haplotype assembly method based on RetNet and deep spectral clustering.","authors":"Junwei Luo, Jiaojiao Wang, Jingjing Wei, Chaokun Yan, Huimin Luo","doi":"10.1093/bib/bbae656","DOIUrl":null,"url":null,"abstract":"<p><p>Gene polymorphism originates from single-nucleotide polymorphisms (SNPs), and the analysis and study of SNPs are of great significance in the field of biogenetics. The haplotype, which consists of the sequence of SNP loci, carries more genetic information than a single SNP. Haplotype assembly plays a significant role in understanding gene function, diagnosing complex diseases, and pinpointing species genes. We propose a novel method, DeepHapNet, for haplotype assembly through the clustering of reads and learning correlations between read pairs. We employ a sequence model called Retentive Network (RetNet), which utilizes a multiscale retention mechanism to extract read features and learn the global relationships among them. Based on the feature representation of reads learned from the RetNet model, the clustering process of reads is implemented using the SpectralNet model, and, finally, haplotypes are constructed based on the read clusters. Experiments with simulated and real datasets show that the method performs well in the haplotype assembly problem of diploid and polyploid based on either long or short reads. The code implementation of DeepHapNet and the processing scripts for experimental data are publicly available at https://github.com/wjj6666/DeepHapNet.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652615/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae656","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Gene polymorphism originates from single-nucleotide polymorphisms (SNPs), and the analysis and study of SNPs are of great significance in the field of biogenetics. The haplotype, which consists of the sequence of SNP loci, carries more genetic information than a single SNP. Haplotype assembly plays a significant role in understanding gene function, diagnosing complex diseases, and pinpointing species genes. We propose a novel method, DeepHapNet, for haplotype assembly through the clustering of reads and learning correlations between read pairs. We employ a sequence model called Retentive Network (RetNet), which utilizes a multiscale retention mechanism to extract read features and learn the global relationships among them. Based on the feature representation of reads learned from the RetNet model, the clustering process of reads is implemented using the SpectralNet model, and, finally, haplotypes are constructed based on the read clusters. Experiments with simulated and real datasets show that the method performs well in the haplotype assembly problem of diploid and polyploid based on either long or short reads. The code implementation of DeepHapNet and the processing scripts for experimental data are publicly available at https://github.com/wjj6666/DeepHapNet.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.