Pincha Devage Sameera Madushan Fernando, Mei Jing Piao, Herath Mudiyanselage Udari Lakmini Herath, Kyoung Ah Kang, Kwon-Soo Ha, Sungwook Chae, Jin Won Hyun
{"title":"C-Peptide Ameliorates Particulate Matter 2.5-Induced Skin Cell Apoptosis by Inhibiting NADPH Oxidation.","authors":"Pincha Devage Sameera Madushan Fernando, Mei Jing Piao, Herath Mudiyanselage Udari Lakmini Herath, Kyoung Ah Kang, Kwon-Soo Ha, Sungwook Chae, Jin Won Hyun","doi":"10.4062/biomolther.2024.053","DOIUrl":null,"url":null,"abstract":"<p><p>Connecting peptide (C-peptide), a byproduct of insulin biosynthesis, has diverse cellular and biological functions. Particulate matter 2.5 (PM<sub>2.5</sub>) adversely affects human skin, leading to skin thickening, wrinkle formation, skin aging, and inflammation. This study aimed to investigate the protective effects of C-peptide against PM<sub>2.5</sub>-induced damage to skin cells, focusing on oxidative stress as a key mechanism. C-peptide mitigated NADPH oxidation and intracellular reactive oxygen species (ROS) production induced by PM<sub>2.5</sub>. It also suppressed PM<sub>2.5</sub>-induced NADPH oxidase (NOX) activity and alleviated PM<sub>2.5</sub>-induced NOX1 and NOX4 expression. C-peptide protected against PM<sub>2.5</sub>-induced DNA damage, lipid peroxidation, and protein carbonylation. Additionally, C-peptide mitigated PM<sub>2.5</sub>-induced apoptosis by inhibiting intracellular ROS production. In summary, our findings suggest that C-peptide mitigates PM<sub>2.5</sub>-induced apoptosis in human HaCaT keratinocytes by inhibiting intracellular ROS production and NOX activity.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4062/biomolther.2024.053","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Connecting peptide (C-peptide), a byproduct of insulin biosynthesis, has diverse cellular and biological functions. Particulate matter 2.5 (PM2.5) adversely affects human skin, leading to skin thickening, wrinkle formation, skin aging, and inflammation. This study aimed to investigate the protective effects of C-peptide against PM2.5-induced damage to skin cells, focusing on oxidative stress as a key mechanism. C-peptide mitigated NADPH oxidation and intracellular reactive oxygen species (ROS) production induced by PM2.5. It also suppressed PM2.5-induced NADPH oxidase (NOX) activity and alleviated PM2.5-induced NOX1 and NOX4 expression. C-peptide protected against PM2.5-induced DNA damage, lipid peroxidation, and protein carbonylation. Additionally, C-peptide mitigated PM2.5-induced apoptosis by inhibiting intracellular ROS production. In summary, our findings suggest that C-peptide mitigates PM2.5-induced apoptosis in human HaCaT keratinocytes by inhibiting intracellular ROS production and NOX activity.
期刊介绍:
Biomolecules & Therapeutics (Biomolecules & Therapeutics) (Print ISSN 1976-9148, Online ISSN 2005-4483) is an international, peer-reviewed, open access journal that covers pharmacological and toxicological fields related to bioactive molecules and therapeutics. It was launched in 1993 as "The Journal of Applied Pharmacology (ISSN 1225-6110)", and renamed "Biomolecules & Therapeutics" (Biomol Ther: abbreviated form) in 2008 (Volume 16, No. 1). It is published bimonthly in January, March, May, July, September and November. All manuscripts should be creative, informative, and contribute to the development of new drugs. Articles in the following categories are published: review articles and research articles.