Performance of a broth microdilution assay for routine minimum inhibitory concentration determination of 14 anti-tuberculous drugs against the Mycobacterium tuberculosis complex based on the EUCAST reference protocol.

IF 4.1 2区 医学 Q2 MICROBIOLOGY
Antimicrobial Agents and Chemotherapy Pub Date : 2025-02-13 Epub Date: 2024-12-18 DOI:10.1128/aac.00946-24
Mikael Mansjö, Carmen Espinosa-Gongora, Ishak Samanci, Ramona Groenheit, Jim Werngren
{"title":"Performance of a broth microdilution assay for routine minimum inhibitory concentration determination of 14 anti-tuberculous drugs against the <i>Mycobacterium tuberculosis</i> complex based on the EUCAST reference protocol.","authors":"Mikael Mansjö, Carmen Espinosa-Gongora, Ishak Samanci, Ramona Groenheit, Jim Werngren","doi":"10.1128/aac.00946-24","DOIUrl":null,"url":null,"abstract":"<p><p>This comparative study aimed at qualifying a broth microdilution (BMD) assay for phenotypic drug susceptibility testing (pDST) of <i>Mycobacterium tuberculosis</i> complex (MTBC) strains for implementation in a routine DST workflow. The assay was developed based on the EUCAST (European Committee on Antimicrobial Susceptibility Testing) reference protocol for determination of the minimum inhibitory concentration (MIC) of 14 anti-tuberculous drugs (isoniazid [INH], rifampicin [RIF], ethambutol [EMB], amikacin [AMI], moxifloxacin [MFX], levofloxacin [LFX], bedaquiline [BDQ], clofazimine [CFZ], delamanid [DLM], pretomanid [PA], para-aminosalicylic acid [PAS], linezolid [LZD], ethionamide [ETH], and cycloserine [CS]). Forty MTBC strains with various drug resistance profiles were tested to determine the agreement between MIC results and genotypic drug susceptibility testing (gDST) results derived from whole-genome sequencing (WGS). The agreement between the BMD and gDST results was solid for the majority of the drugs (average agreement 98%, range 90%-100%), including key drugs such as INH, RIF, MFX, LFX, BDQ, DLM, and PA. Ten discrepancies were identified (corresponding to 1.8% of the total number of MIC determinations) and most (8/10) were characterized by MICs equal or close to the potential critical concentration (pCC) applied in the BMD assay. Importantly, the assay can be adjusted to new drug recommendations and concentrations, tailored to local needs. We conclude that the BMD assay provides reliable results, and its implementation in our MTBC routine workflow will produce valuable data that improve our understanding and management of MTBC drug resistance.</p>","PeriodicalId":8152,"journal":{"name":"Antimicrobial Agents and Chemotherapy","volume":" ","pages":"e0094624"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823602/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antimicrobial Agents and Chemotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/aac.00946-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This comparative study aimed at qualifying a broth microdilution (BMD) assay for phenotypic drug susceptibility testing (pDST) of Mycobacterium tuberculosis complex (MTBC) strains for implementation in a routine DST workflow. The assay was developed based on the EUCAST (European Committee on Antimicrobial Susceptibility Testing) reference protocol for determination of the minimum inhibitory concentration (MIC) of 14 anti-tuberculous drugs (isoniazid [INH], rifampicin [RIF], ethambutol [EMB], amikacin [AMI], moxifloxacin [MFX], levofloxacin [LFX], bedaquiline [BDQ], clofazimine [CFZ], delamanid [DLM], pretomanid [PA], para-aminosalicylic acid [PAS], linezolid [LZD], ethionamide [ETH], and cycloserine [CS]). Forty MTBC strains with various drug resistance profiles were tested to determine the agreement between MIC results and genotypic drug susceptibility testing (gDST) results derived from whole-genome sequencing (WGS). The agreement between the BMD and gDST results was solid for the majority of the drugs (average agreement 98%, range 90%-100%), including key drugs such as INH, RIF, MFX, LFX, BDQ, DLM, and PA. Ten discrepancies were identified (corresponding to 1.8% of the total number of MIC determinations) and most (8/10) were characterized by MICs equal or close to the potential critical concentration (pCC) applied in the BMD assay. Importantly, the assay can be adjusted to new drug recommendations and concentrations, tailored to local needs. We conclude that the BMD assay provides reliable results, and its implementation in our MTBC routine workflow will produce valuable data that improve our understanding and management of MTBC drug resistance.

肉汤微量稀释法测定 14 种抗结核药物对结核分枝杆菌复合体的常规最小抑菌浓度的性能,该方法基于欧盟检验和应用科学委员会(EUCAST)参考方案。
本比较研究旨在确定结核分枝杆菌复合体(MTBC)菌株表型药敏试验(pDST)的肉汤微量稀释(BMD)测定是否适用于常规DST工作流程。根据EUCAST(欧洲抗菌药物敏感性试验委员会)标准方案,建立了14种抗痨药物(异烟肼[INH]、利福平[RIF]、乙胺丁醇[EMB]、阿米卡星[AMI]、莫西沙星[MFX]、左氧氟沙星[LFX]、贝达喹啉[BDQ]、氯法齐明[CFZ]、delamanid [DLM]、pretomanid [PA]、对氨基水杨酸[PAS]、利奈唑胺[LZD]、乙硫酰胺[ETH]和环丝氨酸[CS])的最低抑菌浓度测定方法。对40株具有不同耐药谱的MTBC菌株进行了检测,以确定MIC结果与全基因组测序(WGS)获得的基因型药敏试验(gDST)结果之间的一致性。大多数药物的BMD和gDST结果一致(平均一致性98%,范围90%-100%),包括INH、RIF、MFX、LFX、BDQ、DLM和PA等关键药物。确定了10个差异(相当于MIC测定总数的1.8%),大多数(8/10)的特征是MIC等于或接近BMD测定中应用的潜在临界浓度(pCC)。重要的是,该检测方法可以根据新的药物推荐和浓度进行调整,以适应当地的需要。我们得出结论,BMD测定提供了可靠的结果,并且在我们的MTBC常规工作流程中实施将产生有价值的数据,从而提高我们对MTBC耐药的理解和管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.00
自引率
8.20%
发文量
762
审稿时长
3 months
期刊介绍: Antimicrobial Agents and Chemotherapy (AAC) features interdisciplinary studies that build our understanding of the underlying mechanisms and therapeutic applications of antimicrobial and antiparasitic agents and chemotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信