Luigi F Di Costanzo, Gianmattia Sgueglia, Carla Orlando, Maurizio Polentarutti, Linda Leone, Salvatore La Gatta, Maria De Fenza, Luca De Gioia, Angela Lombardi, Federica Arrigoni, Marco Chino
{"title":"Structural insights into temperature-dependent dynamics of METPsc1, a miniaturized electron-transfer protein.","authors":"Luigi F Di Costanzo, Gianmattia Sgueglia, Carla Orlando, Maurizio Polentarutti, Linda Leone, Salvatore La Gatta, Maria De Fenza, Luca De Gioia, Angela Lombardi, Federica Arrigoni, Marco Chino","doi":"10.1016/j.jinorgbio.2024.112810","DOIUrl":null,"url":null,"abstract":"<p><p>The design of protein-metal complexes is rapidly advancing, with applications spanning catalysis, sensing, and bioremediation. We report a comprehensive investigation of METPsc1, a Miniaturized Electron Transfer Protein, in complex with cadmium. This study elucidates the impact of metal coordination on protein folding and structural dynamics across temperatures from 100 K to 300 K. Our findings reveal that METPsc1, composed of two similar halves stabilized by intramolecular hydrogen bonds, exhibits a unique \"clothespin-like\" recoil mechanism. This allows it to adapt to metal ions of varying radii, mirroring the flexibility observed in natural rubredoxins. High-resolution crystallography and molecular dynamics simulations unveil concerted backbone motions and subtle temperature-dependent shifts in side-chain conformations, particularly for residues involved in crystal packing. Notably, CdS bond lengths increase with temperature, correlating with anisotropic motions of the sulfur atoms involved in second-shell hydrogen bonding. This suggests a dynamic role of protein matrix upon redox cycling. These insights into METPsc1 highlight its potential for catalysis and contribute to the designing of artificial metalloproteins with functional plasticity.</p>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":"264 ","pages":"112810"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jinorgbio.2024.112810","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The design of protein-metal complexes is rapidly advancing, with applications spanning catalysis, sensing, and bioremediation. We report a comprehensive investigation of METPsc1, a Miniaturized Electron Transfer Protein, in complex with cadmium. This study elucidates the impact of metal coordination on protein folding and structural dynamics across temperatures from 100 K to 300 K. Our findings reveal that METPsc1, composed of two similar halves stabilized by intramolecular hydrogen bonds, exhibits a unique "clothespin-like" recoil mechanism. This allows it to adapt to metal ions of varying radii, mirroring the flexibility observed in natural rubredoxins. High-resolution crystallography and molecular dynamics simulations unveil concerted backbone motions and subtle temperature-dependent shifts in side-chain conformations, particularly for residues involved in crystal packing. Notably, CdS bond lengths increase with temperature, correlating with anisotropic motions of the sulfur atoms involved in second-shell hydrogen bonding. This suggests a dynamic role of protein matrix upon redox cycling. These insights into METPsc1 highlight its potential for catalysis and contribute to the designing of artificial metalloproteins with functional plasticity.
期刊介绍:
The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.