Cation-Cation, Cation-Anion, and Anion-Anion Translation Diffusion in Ionic Liquids─Insight from NMR Relaxometry.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Elżbieta Masiewicz, Roksana Markiewicz, Rajendra Kumar Singh, Sujeet Kumar Chaurasia, Danuta Kruk
{"title":"Cation-Cation, Cation-Anion, and Anion-Anion Translation Diffusion in Ionic Liquids─Insight from NMR Relaxometry.","authors":"Elżbieta Masiewicz, Roksana Markiewicz, Rajendra Kumar Singh, Sujeet Kumar Chaurasia, Danuta Kruk","doi":"10.1021/acs.jpcb.4c05069","DOIUrl":null,"url":null,"abstract":"<p><p><sup>1</sup>H and <sup>19</sup>F spin-lattice relaxation experiments have been performed for a series of ionic liquids: [HMIM][TFSI], [OMIM][TFSI], and [DMIM][TFSI] including the same anion and cations with progressively longer alkyl chains. The experiments were performed in a wide frequency range from 10 kHz to 10 MHz (referring to the <sup>1</sup>H resonance frequency) versus temperature. This extensive data set has been analyzed in terms of a theoretical model including all relevant homonuclear (<sup>1</sup>H-<sup>1</sup>H and <sup>19</sup>F-<sup>19</sup>F) and heteronuclear (<sup>1</sup>H-<sup>19</sup>F) relaxation pathways and linking the relaxation features to the relative translational diffusion between the ion pairs (cation-cation, cation-anion, and anion-anion). In addition to the comprehensive theoretical approach, closed-form expressions have been provided and applied to determine the diffusion coefficients from the slopes of the linear dependences of the relaxation rates on the square root of the resonance frequency. The combined experimental and theoretical studies have led to the determination of the complete set of diffusion coefficients, forming a consistent picture of the dynamical scenario. In addition to revealing the dynamical properties of the liquids and the influence of the subtle changes in the cation structure on the movement of both cations and anions, the theoretical means for exploiting Nuclear Magnetic Resonance relaxometry for ionic liquids have been provided.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c05069","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

1H and 19F spin-lattice relaxation experiments have been performed for a series of ionic liquids: [HMIM][TFSI], [OMIM][TFSI], and [DMIM][TFSI] including the same anion and cations with progressively longer alkyl chains. The experiments were performed in a wide frequency range from 10 kHz to 10 MHz (referring to the 1H resonance frequency) versus temperature. This extensive data set has been analyzed in terms of a theoretical model including all relevant homonuclear (1H-1H and 19F-19F) and heteronuclear (1H-19F) relaxation pathways and linking the relaxation features to the relative translational diffusion between the ion pairs (cation-cation, cation-anion, and anion-anion). In addition to the comprehensive theoretical approach, closed-form expressions have been provided and applied to determine the diffusion coefficients from the slopes of the linear dependences of the relaxation rates on the square root of the resonance frequency. The combined experimental and theoretical studies have led to the determination of the complete set of diffusion coefficients, forming a consistent picture of the dynamical scenario. In addition to revealing the dynamical properties of the liquids and the influence of the subtle changes in the cation structure on the movement of both cations and anions, the theoretical means for exploiting Nuclear Magnetic Resonance relaxometry for ionic liquids have been provided.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信