Residue-Level Multiview Deep Learning for ATP Binding Site Prediction and Applications in Kinase Inhibitors.

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL
Jaechan Lee, Dongmin Bang, Sun Kim
{"title":"Residue-Level Multiview Deep Learning for ATP Binding Site Prediction and Applications in Kinase Inhibitors.","authors":"Jaechan Lee, Dongmin Bang, Sun Kim","doi":"10.1021/acs.jcim.4c01255","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate identification of adenosine triphosphate (ATP) binding sites is crucial for understanding cellular functions and advancing drug discovery, particularly in targeting kinases for cancer treatment. Existing methods face significant challenges due to their reliance on time-consuming precomputed features and the heavily imbalanced nature of binding site data without further investigations on their utility in drug discovery. To address these limitations, we introduced Multiview-ATPBind and ResiBoost. Multiview-ATPBind is an end-to-end deep learning model that integrates one-dimensional (1D) sequence and three-dimensional (3D) structural information for rapid and precise residue-level pocket-ligand interaction predictions. Additionally, ResiBoost is a novel residue-level boosting algorithm designed to mitigate data imbalance by enhancing the prediction of rare positive binding residues. Our approach outperforms state-of-the-art models on benchmark data sets, showing significant improvements in balanced metrics with both experimental and AI-predicted structures. Furthermore, our model seamlessly transfers to predicting binding sites and enhancing docking simulations for kinase inhibitors, including imatinib and dasatinib, underscoring the potential of our method in drug discovery applications.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01255","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate identification of adenosine triphosphate (ATP) binding sites is crucial for understanding cellular functions and advancing drug discovery, particularly in targeting kinases for cancer treatment. Existing methods face significant challenges due to their reliance on time-consuming precomputed features and the heavily imbalanced nature of binding site data without further investigations on their utility in drug discovery. To address these limitations, we introduced Multiview-ATPBind and ResiBoost. Multiview-ATPBind is an end-to-end deep learning model that integrates one-dimensional (1D) sequence and three-dimensional (3D) structural information for rapid and precise residue-level pocket-ligand interaction predictions. Additionally, ResiBoost is a novel residue-level boosting algorithm designed to mitigate data imbalance by enhancing the prediction of rare positive binding residues. Our approach outperforms state-of-the-art models on benchmark data sets, showing significant improvements in balanced metrics with both experimental and AI-predicted structures. Furthermore, our model seamlessly transfers to predicting binding sites and enhancing docking simulations for kinase inhibitors, including imatinib and dasatinib, underscoring the potential of our method in drug discovery applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信