{"title":"Residue-Level Multiview Deep Learning for ATP Binding Site Prediction and Applications in Kinase Inhibitors.","authors":"Jaechan Lee, Dongmin Bang, Sun Kim","doi":"10.1021/acs.jcim.4c01255","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate identification of adenosine triphosphate (ATP) binding sites is crucial for understanding cellular functions and advancing drug discovery, particularly in targeting kinases for cancer treatment. Existing methods face significant challenges due to their reliance on time-consuming precomputed features and the heavily imbalanced nature of binding site data without further investigations on their utility in drug discovery. To address these limitations, we introduced Multiview-ATPBind and ResiBoost. Multiview-ATPBind is an end-to-end deep learning model that integrates one-dimensional (1D) sequence and three-dimensional (3D) structural information for rapid and precise residue-level pocket-ligand interaction predictions. Additionally, ResiBoost is a novel residue-level boosting algorithm designed to mitigate data imbalance by enhancing the prediction of rare positive binding residues. Our approach outperforms state-of-the-art models on benchmark data sets, showing significant improvements in balanced metrics with both experimental and AI-predicted structures. Furthermore, our model seamlessly transfers to predicting binding sites and enhancing docking simulations for kinase inhibitors, including imatinib and dasatinib, underscoring the potential of our method in drug discovery applications.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01255","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate identification of adenosine triphosphate (ATP) binding sites is crucial for understanding cellular functions and advancing drug discovery, particularly in targeting kinases for cancer treatment. Existing methods face significant challenges due to their reliance on time-consuming precomputed features and the heavily imbalanced nature of binding site data without further investigations on their utility in drug discovery. To address these limitations, we introduced Multiview-ATPBind and ResiBoost. Multiview-ATPBind is an end-to-end deep learning model that integrates one-dimensional (1D) sequence and three-dimensional (3D) structural information for rapid and precise residue-level pocket-ligand interaction predictions. Additionally, ResiBoost is a novel residue-level boosting algorithm designed to mitigate data imbalance by enhancing the prediction of rare positive binding residues. Our approach outperforms state-of-the-art models on benchmark data sets, showing significant improvements in balanced metrics with both experimental and AI-predicted structures. Furthermore, our model seamlessly transfers to predicting binding sites and enhancing docking simulations for kinase inhibitors, including imatinib and dasatinib, underscoring the potential of our method in drug discovery applications.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.