Huazhen Huang, Xianguo Shi, Hongyang Lei, Fan Hu, Yunpeng Cai
{"title":"ProtChat: An AI Multi-Agent for Automated Protein Analysis Leveraging GPT-4 and Protein Language Model.","authors":"Huazhen Huang, Xianguo Shi, Hongyang Lei, Fan Hu, Yunpeng Cai","doi":"10.1021/acs.jcim.4c01345","DOIUrl":null,"url":null,"abstract":"<p><p>Large language models (LLMs) have transformed natural language processing, enabling advanced human-machine communication. Similarly, in computational biology, protein sequences are interpreted as natural language, facilitating the creation of protein large language models (PLLMs). However, applying PLLMs requires specialized preprocessing and script development, increasing the complexity of their use. Researchers have integrated LLMs with PLLMs to develop automated protein analysis tools to address these challenges, simplifying analytical workflows. Existing technologies often require substantial human intervention for specific protein-related tasks, maintaining high barriers to implementing automated protein analysis systems. Here, we propose ProtChat, an AI multiagent system for protein analysis that integrates the inference capabilities of PLLMs with the task-planning abilities of LLMs. ProtChat integrates GPT-4 with multiple PLLMs, like ESM and MASSA, to automate tasks such as protein property prediction and protein-drug interactions without human intervention. This AI agent enables users to input instructions directly, significantly improving efficiency and usability, making it suitable for researchers without a computational background. Experiments demonstrate that ProtChat can automate complex protein tasks accurately, avoiding manual intervention and delivering results rapidly. This advancement opens new research avenues in computational biology and drug discovery. Future applications may extend ProtChat's capabilities to broader biological data analysis. Our code and data are publicly available at github.com/SIAT-code/ProtChat.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01345","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Large language models (LLMs) have transformed natural language processing, enabling advanced human-machine communication. Similarly, in computational biology, protein sequences are interpreted as natural language, facilitating the creation of protein large language models (PLLMs). However, applying PLLMs requires specialized preprocessing and script development, increasing the complexity of their use. Researchers have integrated LLMs with PLLMs to develop automated protein analysis tools to address these challenges, simplifying analytical workflows. Existing technologies often require substantial human intervention for specific protein-related tasks, maintaining high barriers to implementing automated protein analysis systems. Here, we propose ProtChat, an AI multiagent system for protein analysis that integrates the inference capabilities of PLLMs with the task-planning abilities of LLMs. ProtChat integrates GPT-4 with multiple PLLMs, like ESM and MASSA, to automate tasks such as protein property prediction and protein-drug interactions without human intervention. This AI agent enables users to input instructions directly, significantly improving efficiency and usability, making it suitable for researchers without a computational background. Experiments demonstrate that ProtChat can automate complex protein tasks accurately, avoiding manual intervention and delivering results rapidly. This advancement opens new research avenues in computational biology and drug discovery. Future applications may extend ProtChat's capabilities to broader biological data analysis. Our code and data are publicly available at github.com/SIAT-code/ProtChat.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.