Jiawei Du, Huaijun Wang, Junhuai Li, Kan Wang, Rong Fei
{"title":"HFedCWA: heterogeneous federated learning algorithm based on contribution-weighted aggregation","authors":"Jiawei Du, Huaijun Wang, Junhuai Li, Kan Wang, Rong Fei","doi":"10.1007/s10489-024-06123-4","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of heterogeneous federated learning (HFL) is to address the issues of data heterogeneity, computational resource disparity, and model generalizability and security in federated learning (FL). To facilitate the collaborative training of data and enhance the predictive performance of models, a heterogeneous federated learning algorithm based on contribution-weighted aggregation (HFedCWA) is proposed in this paper. First, weights are assigned on the basis of the distribution differences and quantities of heterogeneous device data, and a contribution-based weighted aggregation method is introduced to dynamically adjust weights and balance data heterogeneity. Second, personalized strategies based on regularization are formulated for heterogeneous devices with different weights, enabling each device to participate in the overall task in an optimal manner. Differential privacy methods are concurrently utilized in FL training to further enhance the security of the system. Finally, experiments are conducted under various data heterogeneity scenarios using the MNIST and CIFAR10 datasets, and the results demonstrate that the HFedCWA can effectively improve the model’s generalizability ability and adaptability to heterogeneous data, thereby enhancing the overall efficiency and performance of the HFL system.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06123-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of heterogeneous federated learning (HFL) is to address the issues of data heterogeneity, computational resource disparity, and model generalizability and security in federated learning (FL). To facilitate the collaborative training of data and enhance the predictive performance of models, a heterogeneous federated learning algorithm based on contribution-weighted aggregation (HFedCWA) is proposed in this paper. First, weights are assigned on the basis of the distribution differences and quantities of heterogeneous device data, and a contribution-based weighted aggregation method is introduced to dynamically adjust weights and balance data heterogeneity. Second, personalized strategies based on regularization are formulated for heterogeneous devices with different weights, enabling each device to participate in the overall task in an optimal manner. Differential privacy methods are concurrently utilized in FL training to further enhance the security of the system. Finally, experiments are conducted under various data heterogeneity scenarios using the MNIST and CIFAR10 datasets, and the results demonstrate that the HFedCWA can effectively improve the model’s generalizability ability and adaptability to heterogeneous data, thereby enhancing the overall efficiency and performance of the HFL system.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.