{"title":"Adjustment of the scaling parameter of Dai-Kou type conjugate gradient methods with application to motion control","authors":"Mahbube Akbari, Saeed Nezhadhosein, Aghile Heydari","doi":"10.21136/AM.2024.0006-24","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a new scaling parameter for the Dai-Kou family of conjugate gradient algorithms (2013), which is one of the most numerically efficient methods for unconstrained optimization. The suggested parameter is based on eigenvalue analysis of the search direction matrix and minimizing the measure function defined by Dennis and Wolkowicz (1993). The corresponding search direction of conjugate gradient method has the sufficient descent property and the extended conjugacy condition. The global convergence of the proposed algorithm is given for both uniformly convex and general nonlinear objective functions. Also, numerical experiments on a set of test functions of the CUTER collections and the practical problem of the manipulator of robot movement control show that the proposed method is effective.</p></div>","PeriodicalId":55505,"journal":{"name":"Applications of Mathematics","volume":"69 6","pages":"829 - 845"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2024.0006-24","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a new scaling parameter for the Dai-Kou family of conjugate gradient algorithms (2013), which is one of the most numerically efficient methods for unconstrained optimization. The suggested parameter is based on eigenvalue analysis of the search direction matrix and minimizing the measure function defined by Dennis and Wolkowicz (1993). The corresponding search direction of conjugate gradient method has the sufficient descent property and the extended conjugacy condition. The global convergence of the proposed algorithm is given for both uniformly convex and general nonlinear objective functions. Also, numerical experiments on a set of test functions of the CUTER collections and the practical problem of the manipulator of robot movement control show that the proposed method is effective.
期刊介绍:
Applications of Mathematics publishes original high quality research papers that are directed towards applications of mathematical methods in various branches of science and engineering.
The main topics covered include:
- Mechanics of Solids;
- Fluid Mechanics;
- Electrical Engineering;
- Solutions of Differential and Integral Equations;
- Mathematical Physics;
- Optimization;
- Probability
Mathematical Statistics.
The journal is of interest to a wide audience of mathematicians, scientists and engineers concerned with the development of scientific computing, mathematical statistics and applicable mathematics in general.