Adjustment of the scaling parameter of Dai-Kou type conjugate gradient methods with application to motion control

IF 0.6 4区 数学 Q4 MATHEMATICS, APPLIED
Mahbube Akbari, Saeed Nezhadhosein, Aghile Heydari
{"title":"Adjustment of the scaling parameter of Dai-Kou type conjugate gradient methods with application to motion control","authors":"Mahbube Akbari,&nbsp;Saeed Nezhadhosein,&nbsp;Aghile Heydari","doi":"10.21136/AM.2024.0006-24","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a new scaling parameter for the Dai-Kou family of conjugate gradient algorithms (2013), which is one of the most numerically efficient methods for unconstrained optimization. The suggested parameter is based on eigenvalue analysis of the search direction matrix and minimizing the measure function defined by Dennis and Wolkowicz (1993). The corresponding search direction of conjugate gradient method has the sufficient descent property and the extended conjugacy condition. The global convergence of the proposed algorithm is given for both uniformly convex and general nonlinear objective functions. Also, numerical experiments on a set of test functions of the CUTER collections and the practical problem of the manipulator of robot movement control show that the proposed method is effective.</p></div>","PeriodicalId":55505,"journal":{"name":"Applications of Mathematics","volume":"69 6","pages":"829 - 845"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.21136/AM.2024.0006-24","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a new scaling parameter for the Dai-Kou family of conjugate gradient algorithms (2013), which is one of the most numerically efficient methods for unconstrained optimization. The suggested parameter is based on eigenvalue analysis of the search direction matrix and minimizing the measure function defined by Dennis and Wolkowicz (1993). The corresponding search direction of conjugate gradient method has the sufficient descent property and the extended conjugacy condition. The global convergence of the proposed algorithm is given for both uniformly convex and general nonlinear objective functions. Also, numerical experiments on a set of test functions of the CUTER collections and the practical problem of the manipulator of robot movement control show that the proposed method is effective.

Dai-Kou型共轭梯度法标度参数的调整及其在运动控制中的应用
我们为Dai-Kou系列共轭梯度算法(2013)引入了一个新的缩放参数,这是最有效的无约束优化数值方法之一。建议的参数是基于搜索方向矩阵的特征值分析和最小化Dennis和Wolkowicz(1993)定义的度量函数。共轭梯度法相应的搜索方向具有充分下降性质和扩展共轭条件。给出了该算法对一致凸和一般非线性目标函数的全局收敛性。通过CUTER集合的一组测试函数和机械手运动控制的实际问题进行数值实验,验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applications of Mathematics
Applications of Mathematics 数学-应用数学
CiteScore
1.50
自引率
0.00%
发文量
0
审稿时长
3.0 months
期刊介绍: Applications of Mathematics publishes original high quality research papers that are directed towards applications of mathematical methods in various branches of science and engineering. The main topics covered include: - Mechanics of Solids; - Fluid Mechanics; - Electrical Engineering; - Solutions of Differential and Integral Equations; - Mathematical Physics; - Optimization; - Probability Mathematical Statistics. The journal is of interest to a wide audience of mathematicians, scientists and engineers concerned with the development of scientific computing, mathematical statistics and applicable mathematics in general.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信