{"title":"Obstructions to Topological Relaxation for Generic Magnetic Fields","authors":"Alberto Enciso, Daniel Peralta-Salas","doi":"10.1007/s00205-024-02078-5","DOIUrl":null,"url":null,"abstract":"<div><p>For any (analytic) axisymmetric toroidal domain <span>\\(\\Omega \\subset \\mathbb {R}^3\\)</span> we prove that there is a locally generic set of divergence-free vector fields that are not topologically equivalent to any magnetohydrostatic (MHS) state in <span>\\(\\Omega \\)</span>. Each vector field in this set is Morse–Smale on the boundary, does not admit a nonconstant first integral, and exhibits fast growth of periodic orbits; in particular this set is residual in the Newhouse domain. The key dynamical idea behind this result is that a vector field with a dense set of nondegenerate periodic orbits cannot be topologically equivalent to a generic MHS state. On the analytic side, this geometric obstruction is implemented by means of a novel rigidity theorem for the relaxation of generic magnetic fields with a suitably complex orbit structure.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-024-02078-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02078-5","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
For any (analytic) axisymmetric toroidal domain \(\Omega \subset \mathbb {R}^3\) we prove that there is a locally generic set of divergence-free vector fields that are not topologically equivalent to any magnetohydrostatic (MHS) state in \(\Omega \). Each vector field in this set is Morse–Smale on the boundary, does not admit a nonconstant first integral, and exhibits fast growth of periodic orbits; in particular this set is residual in the Newhouse domain. The key dynamical idea behind this result is that a vector field with a dense set of nondegenerate periodic orbits cannot be topologically equivalent to a generic MHS state. On the analytic side, this geometric obstruction is implemented by means of a novel rigidity theorem for the relaxation of generic magnetic fields with a suitably complex orbit structure.
期刊介绍:
The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.