WRGAT-PTBERT: weighted relational graph attention network over post-trained BERT for aspect based sentiment analysis

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Sharad Verma, Ashish Kumar, Aditi Sharan
{"title":"WRGAT-PTBERT: weighted relational graph attention network over post-trained BERT for aspect based sentiment analysis","authors":"Sharad Verma,&nbsp;Ashish Kumar,&nbsp;Aditi Sharan","doi":"10.1007/s10489-024-06011-x","DOIUrl":null,"url":null,"abstract":"<div><p>Aspect-based sentiment analysis (ABSA) focused on forecasting the sentiment orientation of a given aspect target within the input. Existing methods employ neural networks and attention mechanisms to encode input and discern aspect-context relationships. Bidirectional Encoder Representation from Transformer(BERT) has become the standard contextual encoding method in the textual domain. Researchers have ventured into utilizing graph attention networks(GAT) to incorporate syntactic information into the task, yielding cutting-edge results. However, current approaches overlook the potential advantages of considering word dependency relations. This work proposes a hybrid model combining contextual information obtained from a post-trained BERT with syntactic information from a relational GAT (RGAT) for the ABSA task. Our approach leverages dependency relation information effectively to improve ABSA performance in terms of accuracy and F1-score, as demonstrated through experiments on SemEval-14 Restaurant and Laptop, MAMS, and ACL-14 Twitter datasets.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06011-x","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Aspect-based sentiment analysis (ABSA) focused on forecasting the sentiment orientation of a given aspect target within the input. Existing methods employ neural networks and attention mechanisms to encode input and discern aspect-context relationships. Bidirectional Encoder Representation from Transformer(BERT) has become the standard contextual encoding method in the textual domain. Researchers have ventured into utilizing graph attention networks(GAT) to incorporate syntactic information into the task, yielding cutting-edge results. However, current approaches overlook the potential advantages of considering word dependency relations. This work proposes a hybrid model combining contextual information obtained from a post-trained BERT with syntactic information from a relational GAT (RGAT) for the ABSA task. Our approach leverages dependency relation information effectively to improve ABSA performance in terms of accuracy and F1-score, as demonstrated through experiments on SemEval-14 Restaurant and Laptop, MAMS, and ACL-14 Twitter datasets.

WRGAT-PTBERT:基于方面情感分析的后训练 BERT 加权关系图注意网络
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信