Mapping typical LULC classes using spatiotemporal analysis and the thresholds of spectral optical satellite imagery indices: a case study in Algiers city

IF 2.9 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Sana Ghezali, Mohamed Amine Boukhemacha
{"title":"Mapping typical LULC classes using spatiotemporal analysis and the thresholds of spectral optical satellite imagery indices: a case study in Algiers city","authors":"Sana Ghezali,&nbsp;Mohamed Amine Boukhemacha","doi":"10.1007/s10661-024-13577-z","DOIUrl":null,"url":null,"abstract":"<div><p>Land use and land cover (LULC) dynamics have a substantial impact on human–environment interactions. Nowadays, remote sensing imagery has emerged as a useful tool for mapping and tracking LULC changes. Spectral optical indices derived from remote sensing data can provide insightful information about vegetation health, urban expansion, water bodies, deforestation patterns, and many other applications. The present study examines the use of popular optical spectral indices: vegetation index (NDVI), water indices (NDWI and MNDWI), urban indices (UI and NDBI), and bare land index (MNDBI) in threshold-based classification for LULC mapping using Algiers (Algeria) as a case study, and assesses the potential impacts of their spatiotemporal (at a seasonal and annual temporal scales) variations associated with natural seasonal changes and/or the evolution of the city’s fabric. Here, a geo-statistical analysis of the values of the selected spectral indices at the level of each LU-class is conducted, threshold values (that account for seasonal variations) are proposed, and a classification approach (making use of best performing indices) is proposed and tested. Although fast and easy to implement, the proposed threshold-based LULC classification approach was successfully used for mapping LULC for the study zone with a high accuracy (an overall accuracy of 90.20 and a kappa of 0.84 for the demonstration year of 2017). The outcomes of the study heighten the potential and the limitations of the use of spectral indices for LULC mapping practices and consequent applications in environmental and urban studies.</p></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"197 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-024-13577-z","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Land use and land cover (LULC) dynamics have a substantial impact on human–environment interactions. Nowadays, remote sensing imagery has emerged as a useful tool for mapping and tracking LULC changes. Spectral optical indices derived from remote sensing data can provide insightful information about vegetation health, urban expansion, water bodies, deforestation patterns, and many other applications. The present study examines the use of popular optical spectral indices: vegetation index (NDVI), water indices (NDWI and MNDWI), urban indices (UI and NDBI), and bare land index (MNDBI) in threshold-based classification for LULC mapping using Algiers (Algeria) as a case study, and assesses the potential impacts of their spatiotemporal (at a seasonal and annual temporal scales) variations associated with natural seasonal changes and/or the evolution of the city’s fabric. Here, a geo-statistical analysis of the values of the selected spectral indices at the level of each LU-class is conducted, threshold values (that account for seasonal variations) are proposed, and a classification approach (making use of best performing indices) is proposed and tested. Although fast and easy to implement, the proposed threshold-based LULC classification approach was successfully used for mapping LULC for the study zone with a high accuracy (an overall accuracy of 90.20 and a kappa of 0.84 for the demonstration year of 2017). The outcomes of the study heighten the potential and the limitations of the use of spectral indices for LULC mapping practices and consequent applications in environmental and urban studies.

利用时空分析和光谱光学卫星图像指数阈值绘制典型 LULC 等级图:阿尔及尔市案例研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Monitoring and Assessment
Environmental Monitoring and Assessment 环境科学-环境科学
CiteScore
4.70
自引率
6.70%
发文量
1000
审稿时长
7.3 months
期刊介绍: Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信