{"title":"NQF-RNN: probabilistic forecasting via neural quantile function-based recurrent neural networks","authors":"Jungyoon Song, Woojin Chang, Jae Wook Song","doi":"10.1007/s10489-024-06077-7","DOIUrl":null,"url":null,"abstract":"<div><p>Probabilistic forecasting offers insights beyond point estimates, supporting more informed decision-making. This paper introduces the Neural Quantile Function with Recurrent Neural Networks (NQF-RNN), a model for multistep-ahead probabilistic time series forecasting. NQF-RNN combines neural quantile functions with recurrent neural networks, enabling applicability across diverse time series datasets. The model uses a monotonically increasing neural quantile function and is trained with a continuous ranked probability score (CRPS)-based loss function. NQF-RNN’s performance is evaluated on synthetic datasets generated from multiple distributions and six real-world time series datasets with both periodicity and irregularities. NQF-RNN demonstrates competitive performance on synthetic data and outperforms benchmarks on real-world data, achieving lower average forecast errors across most metrics. Notably, NQF-RNN surpasses benchmarks in CRPS, a key probabilistic metric, and tail-weighted CRPS, which assesses tail event forecasting with a narrow prediction interval. The model outperforms other deep learning models by 5% to 41% in CRPS, with improvements of 5% to 53% in left tail-weighted CRPS and 6% to 34% in right tail-weighted CRPS. Against its baseline model, DeepAR, NQF-RNN achieves a 41% improvement in CRPS, indicating its effectiveness in generating reliable prediction intervals. These results highlight NQF-RNN’s robustness in managing complex and irregular patterns in real-world forecasting scenarios.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06077-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Probabilistic forecasting offers insights beyond point estimates, supporting more informed decision-making. This paper introduces the Neural Quantile Function with Recurrent Neural Networks (NQF-RNN), a model for multistep-ahead probabilistic time series forecasting. NQF-RNN combines neural quantile functions with recurrent neural networks, enabling applicability across diverse time series datasets. The model uses a monotonically increasing neural quantile function and is trained with a continuous ranked probability score (CRPS)-based loss function. NQF-RNN’s performance is evaluated on synthetic datasets generated from multiple distributions and six real-world time series datasets with both periodicity and irregularities. NQF-RNN demonstrates competitive performance on synthetic data and outperforms benchmarks on real-world data, achieving lower average forecast errors across most metrics. Notably, NQF-RNN surpasses benchmarks in CRPS, a key probabilistic metric, and tail-weighted CRPS, which assesses tail event forecasting with a narrow prediction interval. The model outperforms other deep learning models by 5% to 41% in CRPS, with improvements of 5% to 53% in left tail-weighted CRPS and 6% to 34% in right tail-weighted CRPS. Against its baseline model, DeepAR, NQF-RNN achieves a 41% improvement in CRPS, indicating its effectiveness in generating reliable prediction intervals. These results highlight NQF-RNN’s robustness in managing complex and irregular patterns in real-world forecasting scenarios.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.