{"title":"Asymmetry of MHD Equilibria for Generic Adapted Metrics","authors":"Robert Cardona, Nathan Duignan, David Perrella","doi":"10.1007/s00205-024-02075-8","DOIUrl":null,"url":null,"abstract":"<div><p>Ideal magnetohydrodynamic (MHD) equilibria on a Riemannian 3-manifold satisfy the stationary Euler equations for ideal fluids. A stationary solution <i>X</i> admits a large set of “adapted” metrics on <i>M</i> for which <i>X</i> solves the corresponding MHD equilibrium equations with the same pressure function. We prove different versions of the following statement: an MHD equilibrium with non-constant pressure on a compact three-manifold with or without boundary admits no continuous Killing symmetries for an open and dense set of adapted metrics. This contrasts with the classical conjecture of Grad which loosely states that an MHD equilibrium on a toroidal Euclidean domain in <span>\\({\\mathbb {R}}^3\\)</span> with pressure function foliating the domain with nested toroidal surfaces must admit Euclidean symmetries.\n</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02075-8","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Ideal magnetohydrodynamic (MHD) equilibria on a Riemannian 3-manifold satisfy the stationary Euler equations for ideal fluids. A stationary solution X admits a large set of “adapted” metrics on M for which X solves the corresponding MHD equilibrium equations with the same pressure function. We prove different versions of the following statement: an MHD equilibrium with non-constant pressure on a compact three-manifold with or without boundary admits no continuous Killing symmetries for an open and dense set of adapted metrics. This contrasts with the classical conjecture of Grad which loosely states that an MHD equilibrium on a toroidal Euclidean domain in \({\mathbb {R}}^3\) with pressure function foliating the domain with nested toroidal surfaces must admit Euclidean symmetries.
期刊介绍:
The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.