Synthesis and Magnetic Characterization of Dispersed Fe\(_x\)Ni\(_{100-x}\) (x = 10, 20, 30, 40, and 50) Nanoalloys Using the Thermal Decomposition Method
E. B. Peixoto, L. F. S. Andrade, M. H. Carvalho, J. D. T. Santos, L. S. Silva, J. G. S. Duque
{"title":"Synthesis and Magnetic Characterization of Dispersed Fe\\(_x\\)Ni\\(_{100-x}\\) (x = 10, 20, 30, 40, and 50) Nanoalloys Using the Thermal Decomposition Method","authors":"E. B. Peixoto, L. F. S. Andrade, M. H. Carvalho, J. D. T. Santos, L. S. Silva, J. G. S. Duque","doi":"10.1007/s13538-024-01679-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we report on synthesis and magnetic properties of dispersed Fe<span>\\(_x\\)</span>Ni<span>\\(_{1-x}\\)</span> (<i>x</i> = 10, 20, 30, 40, and 50) nanoalloys grown by thermal decomposition. X-ray diffraction patterns show that the majority crystalline phase is consistent with a <i>fcc</i> crystal structure (space group <i>Fm</i>3<i>m</i>) for all samples. Magnetization as a function of magnetic field and temperature shows that Fe<span>\\(_x\\)</span>Ni<span>\\(_{1-x}\\)</span> are superparamagnetic with blocking temperatures around 10 K. However, for all samples, it is possible to observe a second very broad maximum, which can be ascribed to a bimodal nanoparticle size distribution and/or Ni nanoparticles for the case of samples grown with <i>x</i> = 10, 20, and 30. Finally, we argue that the nanoalloy size distribution and/or interaction effects should play a crucial role in determining the magnetic behavior of samples once we are not able to fit our <span>\\(H_C\\)</span>(<i>T</i>) data using the Néel relaxation and the Bean-Livingston approaches in a wide temperature range.</p></div>","PeriodicalId":499,"journal":{"name":"Brazilian Journal of Physics","volume":"55 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s13538-024-01679-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we report on synthesis and magnetic properties of dispersed Fe\(_x\)Ni\(_{1-x}\) (x = 10, 20, 30, 40, and 50) nanoalloys grown by thermal decomposition. X-ray diffraction patterns show that the majority crystalline phase is consistent with a fcc crystal structure (space group Fm3m) for all samples. Magnetization as a function of magnetic field and temperature shows that Fe\(_x\)Ni\(_{1-x}\) are superparamagnetic with blocking temperatures around 10 K. However, for all samples, it is possible to observe a second very broad maximum, which can be ascribed to a bimodal nanoparticle size distribution and/or Ni nanoparticles for the case of samples grown with x = 10, 20, and 30. Finally, we argue that the nanoalloy size distribution and/or interaction effects should play a crucial role in determining the magnetic behavior of samples once we are not able to fit our \(H_C\)(T) data using the Néel relaxation and the Bean-Livingston approaches in a wide temperature range.
期刊介绍:
The Brazilian Journal of Physics is a peer-reviewed international journal published by the Brazilian Physical Society (SBF). The journal publishes new and original research results from all areas of physics, obtained in Brazil and from anywhere else in the world. Contents include theoretical, practical and experimental papers as well as high-quality review papers. Submissions should follow the generally accepted structure for journal articles with basic elements: title, abstract, introduction, results, conclusions, and references.