Synthesis of ethylphenols and xanthenes via reaction of calcium carbide and phenol: experimental and theoretical studies†

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Xin Liu, Yuxin Yan, Zhenyu Liu and Qingya Liu
{"title":"Synthesis of ethylphenols and xanthenes via reaction of calcium carbide and phenol: experimental and theoretical studies†","authors":"Xin Liu, Yuxin Yan, Zhenyu Liu and Qingya Liu","doi":"10.1039/D4RE00397G","DOIUrl":null,"url":null,"abstract":"<p >Calcium carbide (CaC<small><sub>2</sub></small>) is a platform chemical for various organic synthesis, and monomeric phenol (PhOH) is expected to be produced <em>via</em> biomass conversion in the near future. This work explores their downstream product during reaction at 300–400 °C without additional solvent and catalyst. The reaction matrix was investigated by density functional theory (DFT) calculation and characterization of the solid product. Results indicate that in addition to ethylphenols, xanthenes are unexpectedly formed with a yield of 26.0% at 350 °C. DFT calculation indicates that PhOH is firstly alkylated by CaC<small><sub>2</sub></small> to form vinylphenol or dehydrated intermolecularly to form diphenyl ether. Xanthenes are then formed through two pathways: dehydration of vinylphenol with PhOH and then cyclization; alkylation and cyclization of diphenyl ether with CaC<small><sub>2</sub></small>-derived acetylene. Ethylphenols are formed through hydrogenation of vinylphenol where PhOH provides hydrogen. Vinylphenol hydrogenation for ethylphenols exhibits a competitive advantage over vinylphenol dehydration for xanthenes. X-ray diffraction (XRD) of the solid product indicates that CaC<small><sub>2</sub></small> is converted to calcium phenoxide. Isomolecular electrostatic potential maps suggest that calcium phenoxide exerts a catalytic effect on the alkylation and dehydration reactions. This work provides a novel protocol for xanthene synthesis and an <em>in situ</em> efficient utilization method of the acetenyl group.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 1","pages":" 191-202"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d4re00397g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Calcium carbide (CaC2) is a platform chemical for various organic synthesis, and monomeric phenol (PhOH) is expected to be produced via biomass conversion in the near future. This work explores their downstream product during reaction at 300–400 °C without additional solvent and catalyst. The reaction matrix was investigated by density functional theory (DFT) calculation and characterization of the solid product. Results indicate that in addition to ethylphenols, xanthenes are unexpectedly formed with a yield of 26.0% at 350 °C. DFT calculation indicates that PhOH is firstly alkylated by CaC2 to form vinylphenol or dehydrated intermolecularly to form diphenyl ether. Xanthenes are then formed through two pathways: dehydration of vinylphenol with PhOH and then cyclization; alkylation and cyclization of diphenyl ether with CaC2-derived acetylene. Ethylphenols are formed through hydrogenation of vinylphenol where PhOH provides hydrogen. Vinylphenol hydrogenation for ethylphenols exhibits a competitive advantage over vinylphenol dehydration for xanthenes. X-ray diffraction (XRD) of the solid product indicates that CaC2 is converted to calcium phenoxide. Isomolecular electrostatic potential maps suggest that calcium phenoxide exerts a catalytic effect on the alkylation and dehydration reactions. This work provides a novel protocol for xanthene synthesis and an in situ efficient utilization method of the acetenyl group.

Abstract Image

电石和苯酚反应合成乙基酚和杂蒽:实验和理论研究†
电石(CaC2)是多种有机合成的平台化学品,单体苯酚(PhOH)有望在不久的将来通过生物质转化生产。本研究探索了它们在300-400°C下反应的下游产物,无需额外的溶剂和催化剂。采用密度泛函理论(DFT)对反应矩阵进行了计算,并对固体产物进行了表征。结果表明,在350°C下,除了乙基酚外,还意外生成了杂蒽,收率为26.0%。DFT计算表明,phh首先被CaC2烷基化生成乙烯酚或分子间脱水生成二苯基醚。然后通过两个途径形成杂蒽:乙烯基苯酚与phh脱水,然后环合;二苯醚与cac2衍生乙炔的烷基化和环化反应。乙基苯酚是通过乙烯基苯酚氢化而形成的,其中phh提供氢。乙烯基苯酚加氢制乙基苯酚比乙烯基苯酚脱水制杂蒽具有竞争优势。固体产物的x射线衍射(XRD)表明,CaC2转化为苯氧化钙。等分子静电势图表明,苯氧化钙对烷基化反应和脱水反应具有催化作用。本研究为杂蒽的合成提供了一种新的方案,并为其乙酰基的原位高效利用提供了一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reaction Chemistry & Engineering
Reaction Chemistry & Engineering Chemistry-Chemistry (miscellaneous)
CiteScore
6.60
自引率
7.70%
发文量
227
期刊介绍: Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society. From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信