{"title":"Coordinated Planning for Stability Enhancement in High IBR-Penetrated Systems","authors":"Zhongda Chu;Fei Teng","doi":"10.1109/TSTE.2024.3480456","DOIUrl":null,"url":null,"abstract":"Security and stability challenges in future power systems with high penetration Inverter-Based Resources (IBR) have been anticipated as one of the main barriers to decarbonization. Grid-following IBRs may become unstable under small disturbances in weak grids, while during transient processes, system stability and protection may be jeopardized due to the lack of sufficient Short-Circuit Current (SCC). To solve these challenges and achieve decarbonization, the future system has to be carefully planned. However, it remains unclear how both small-signal and transient stabilities can be considered during the system planning stage. In this context, this paper proposes a coordinated planning model of different resources in the transmission system, namely the synchronous condensers and GFM IBRs to enhance system stability. The system strength and SCC constraints are analytically derived by considering the different characteristics of synchronous units and IBRs, which are further effectively linearized through a novel data-driven approach, where an active sampling method is proposed to generate a representative data set. The significant economic value of the proposed coordinated planning framework in both system asset investment and system operation is demonstrated through detailed case studies.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 1","pages":"700-715"},"PeriodicalIF":8.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10716464/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Security and stability challenges in future power systems with high penetration Inverter-Based Resources (IBR) have been anticipated as one of the main barriers to decarbonization. Grid-following IBRs may become unstable under small disturbances in weak grids, while during transient processes, system stability and protection may be jeopardized due to the lack of sufficient Short-Circuit Current (SCC). To solve these challenges and achieve decarbonization, the future system has to be carefully planned. However, it remains unclear how both small-signal and transient stabilities can be considered during the system planning stage. In this context, this paper proposes a coordinated planning model of different resources in the transmission system, namely the synchronous condensers and GFM IBRs to enhance system stability. The system strength and SCC constraints are analytically derived by considering the different characteristics of synchronous units and IBRs, which are further effectively linearized through a novel data-driven approach, where an active sampling method is proposed to generate a representative data set. The significant economic value of the proposed coordinated planning framework in both system asset investment and system operation is demonstrated through detailed case studies.
期刊介绍:
The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.