Research on PV Hosting Capacity of Distribution Networks Based on Data-Driven and Nonlinear Sensitivity Functions

IF 8.6 1区 工程技术 Q1 ENERGY & FUELS
Le Su;Xueping Pan;Xiaorong Sun;Jinpeng Guo;Amjad Anvari-Moghaddam
{"title":"Research on PV Hosting Capacity of Distribution Networks Based on Data-Driven and Nonlinear Sensitivity Functions","authors":"Le Su;Xueping Pan;Xiaorong Sun;Jinpeng Guo;Amjad Anvari-Moghaddam","doi":"10.1109/TSTE.2024.3467679","DOIUrl":null,"url":null,"abstract":"Voltage calculations are critical for assessing photovoltaic hosting capacity; however, acquiring precise parameters and the topology of the medium voltage distribution networks poses a significant challenge, thereby rendering traditional power flow computational methods ineffective. To address this issue, this paper introduces a hybrid method that utilizes a data-driven approach in conjunction with nonlinear functions to determine node voltages. Firstly, a deep neural network model for distribution network's power flow and voltage-power sensitivity analysis is established using historical data. This model captures the data-driven error, which reduces time consumption and increases accuracy. Secondly, a fourth-order Taylor expansion of power to voltage is derived based on the power flow mathematical equation to extrapolate voltage. This is necessary because when photovoltaic generators are connected to the nodes, the load data often exceeds the historical data range, rendering neural networks inapplicable. Finally, the sparrow search algorithm is employed to determine the hosting capacity. The proposed methods are validated using IEEE 33 and IEEE 69 case systems, demonstrating that the data-driven approach, combined with nonlinear functions, can ensure the accuracy in obtaining node voltage and the hosting capacity.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 1","pages":"483-495"},"PeriodicalIF":8.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10693542/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Voltage calculations are critical for assessing photovoltaic hosting capacity; however, acquiring precise parameters and the topology of the medium voltage distribution networks poses a significant challenge, thereby rendering traditional power flow computational methods ineffective. To address this issue, this paper introduces a hybrid method that utilizes a data-driven approach in conjunction with nonlinear functions to determine node voltages. Firstly, a deep neural network model for distribution network's power flow and voltage-power sensitivity analysis is established using historical data. This model captures the data-driven error, which reduces time consumption and increases accuracy. Secondly, a fourth-order Taylor expansion of power to voltage is derived based on the power flow mathematical equation to extrapolate voltage. This is necessary because when photovoltaic generators are connected to the nodes, the load data often exceeds the historical data range, rendering neural networks inapplicable. Finally, the sparrow search algorithm is employed to determine the hosting capacity. The proposed methods are validated using IEEE 33 and IEEE 69 case systems, demonstrating that the data-driven approach, combined with nonlinear functions, can ensure the accuracy in obtaining node voltage and the hosting capacity.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信