Analytical Evaluation to Power System Oscillation Damping Capability of DFIG-POD Based on Path Damping Torque Analysis

IF 8.6 1区 工程技术 Q1 ENERGY & FUELS
Shenghu Li;Jianqiao Ye
{"title":"Analytical Evaluation to Power System Oscillation Damping Capability of DFIG-POD Based on Path Damping Torque Analysis","authors":"Shenghu Li;Jianqiao Ye","doi":"10.1109/TSTE.2024.3467686","DOIUrl":null,"url":null,"abstract":"The increasing wind power decreases power system damping and may intensify low-frequency oscillation (LFO). The LFO are usually damped by the power system stabilizer (PSS) at synchronous generator (SG), and now by the power oscillation damper (POD) at doubly-fed induction generator (DFIG). The existing damping torque analysis (DTA) sets the parameters of the PSS and evaluates its damping capability, but can not be applied to the POD due to the difficulty of finding the damping path related to the DFIG and the coupling between the POD and the DFIG, which are studied in this paper. At first, the analytical expression of the coupling between the POD and DFIG is newly derived with linear fractional transformation (LFT) technique. Then the path damping torque analysis (PDTA) is proposed to reconstruct the damping path of the POD. Thirdly, the damping indicator based on the return difference matrix is proposed to evaluate the contribution of damping path to the LFO. Finally, numerical results of test system are given to validate effectiveness and accuracy of the proposed model, and parameter optimization to the multi-input POD (MIPOD) is performed to show the application value of the proposed model.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 1","pages":"496-511"},"PeriodicalIF":8.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10693531/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing wind power decreases power system damping and may intensify low-frequency oscillation (LFO). The LFO are usually damped by the power system stabilizer (PSS) at synchronous generator (SG), and now by the power oscillation damper (POD) at doubly-fed induction generator (DFIG). The existing damping torque analysis (DTA) sets the parameters of the PSS and evaluates its damping capability, but can not be applied to the POD due to the difficulty of finding the damping path related to the DFIG and the coupling between the POD and the DFIG, which are studied in this paper. At first, the analytical expression of the coupling between the POD and DFIG is newly derived with linear fractional transformation (LFT) technique. Then the path damping torque analysis (PDTA) is proposed to reconstruct the damping path of the POD. Thirdly, the damping indicator based on the return difference matrix is proposed to evaluate the contribution of damping path to the LFO. Finally, numerical results of test system are given to validate effectiveness and accuracy of the proposed model, and parameter optimization to the multi-input POD (MIPOD) is performed to show the application value of the proposed model.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信