Harnessing Multimodal Data and Deep Learning for Comprehensive Gait Analysis in Pediatric Cerebral Palsy

IF 4.3 2区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jing Yang;Liangyu Li;Lip Yee Por;Sami Bourouis;Sami Dhahbi;Abdullah Ayub Khan
{"title":"Harnessing Multimodal Data and Deep Learning for Comprehensive Gait Analysis in Pediatric Cerebral Palsy","authors":"Jing Yang;Liangyu Li;Lip Yee Por;Sami Bourouis;Sami Dhahbi;Abdullah Ayub Khan","doi":"10.1109/TCE.2024.3482689","DOIUrl":null,"url":null,"abstract":"Cerebral palsy (CP) is a leading cause of motor dysfunction in children, significantly impacting gait and mobility. Accurate and early diagnosis of gait abnormalities in pediatric CP patients is crucial for effective intervention and management. However, making an early-stage CP diagnosis based only on a single vision modality such as an MRI has many difficulties. Because of the baby’s obstinate movements, the possibility of early recovery, the lack of a single vision modality, and the noisy or absent brain magnetic resonance imaging (MRI) slices, the task is getting harder and harder. This study employed a robust framework that leverages data from multiple sensor modalities, including wearable inertial measurement units (IMUs), pressure-sensitive mats, and motion capture systems integrated with MRI to generate multimodal data. This multimodal data was then processed using convolutional neural networks (CNNs) and long short-term memory (LSTM) networks to capture both spatial and temporal dynamics of gait patterns. In the experimentation, we achieved remarkable results with an accuracy of 95.33%, an AUC of 96.2%, an F1 score of 95.28%, and a misclassification rate of 0.0467. Also, the comparative analysis with state-of-the-art demonstrates that the proposed approach significantly outperforms traditional methods in identifying subtle gait abnormalities, providing a more detailed and accurate assessment of gait deviations in pediatric cerebral palsy patients.","PeriodicalId":13208,"journal":{"name":"IEEE Transactions on Consumer Electronics","volume":"70 3","pages":"5401-5410"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Consumer Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10720788/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Cerebral palsy (CP) is a leading cause of motor dysfunction in children, significantly impacting gait and mobility. Accurate and early diagnosis of gait abnormalities in pediatric CP patients is crucial for effective intervention and management. However, making an early-stage CP diagnosis based only on a single vision modality such as an MRI has many difficulties. Because of the baby’s obstinate movements, the possibility of early recovery, the lack of a single vision modality, and the noisy or absent brain magnetic resonance imaging (MRI) slices, the task is getting harder and harder. This study employed a robust framework that leverages data from multiple sensor modalities, including wearable inertial measurement units (IMUs), pressure-sensitive mats, and motion capture systems integrated with MRI to generate multimodal data. This multimodal data was then processed using convolutional neural networks (CNNs) and long short-term memory (LSTM) networks to capture both spatial and temporal dynamics of gait patterns. In the experimentation, we achieved remarkable results with an accuracy of 95.33%, an AUC of 96.2%, an F1 score of 95.28%, and a misclassification rate of 0.0467. Also, the comparative analysis with state-of-the-art demonstrates that the proposed approach significantly outperforms traditional methods in identifying subtle gait abnormalities, providing a more detailed and accurate assessment of gait deviations in pediatric cerebral palsy patients.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
9.30%
发文量
59
审稿时长
3.3 months
期刊介绍: The main focus for the IEEE Transactions on Consumer Electronics is the engineering and research aspects of the theory, design, construction, manufacture or end use of mass market electronics, systems, software and services for consumers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信