Deep Receiver Architectures for Robust MIMO Rate Splitting Multiple Access

Dheeraj Raja Kumar;Carles Antón-Haro;Xavier Mestre
{"title":"Deep Receiver Architectures for Robust MIMO Rate Splitting Multiple Access","authors":"Dheeraj Raja Kumar;Carles Antón-Haro;Xavier Mestre","doi":"10.1109/TMLCN.2024.3513267","DOIUrl":null,"url":null,"abstract":"Machine Learning tools are becoming very powerful alternatives to improve the robustness of wireless communication systems. Signal processing procedures that tend to collapse in the presence of model mismatches can be effectively improved and made robust by incorporating the selective use of data-driven techniques. This paper explores the use of neural network (NN)-based receivers to improve the reception of a Rate Splitting Multiple Access (RSMA) system. The intention is to explore several alternatives to conventional successive interference cancellation (SIC) techniques, which are known to be ineffective in the presence of channel state information (CSI) and model errors. The focus is on NN-based architectures that do not need to be retrained at each channel realization. The main idea is to replace some of the basic operations in a conventional multi-antenna SIC receiver by their NN-based equivalents, following a hybrid Model/Data-driven based approach that preserves the main procedures in the model-based signal demodulation chain. Three different architectures are explored along with their performance and computational complexity, characterized under different degrees of model uncertainty, including imperfect channel state information and non-linear channels. We evaluate the performance of data-driven architectures in overloaded scenario to analyze its effectiveness against conventional benchmarks. The study dictates that a higher degree of robustness of transceiver can be achieved, provided the neural architecture is well-designed and fed with the right information.","PeriodicalId":100641,"journal":{"name":"IEEE Transactions on Machine Learning in Communications and Networking","volume":"3 ","pages":"45-63"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10781451","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Machine Learning in Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10781451/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine Learning tools are becoming very powerful alternatives to improve the robustness of wireless communication systems. Signal processing procedures that tend to collapse in the presence of model mismatches can be effectively improved and made robust by incorporating the selective use of data-driven techniques. This paper explores the use of neural network (NN)-based receivers to improve the reception of a Rate Splitting Multiple Access (RSMA) system. The intention is to explore several alternatives to conventional successive interference cancellation (SIC) techniques, which are known to be ineffective in the presence of channel state information (CSI) and model errors. The focus is on NN-based architectures that do not need to be retrained at each channel realization. The main idea is to replace some of the basic operations in a conventional multi-antenna SIC receiver by their NN-based equivalents, following a hybrid Model/Data-driven based approach that preserves the main procedures in the model-based signal demodulation chain. Three different architectures are explored along with their performance and computational complexity, characterized under different degrees of model uncertainty, including imperfect channel state information and non-linear channels. We evaluate the performance of data-driven architectures in overloaded scenario to analyze its effectiveness against conventional benchmarks. The study dictates that a higher degree of robustness of transceiver can be achieved, provided the neural architecture is well-designed and fed with the right information.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信