Wei Liu;He Wang;Yicheng Qiao;Haopeng Zhang;Junli Yang
{"title":"DLAFNet: Direct LiDAR-Aerial Fusion Network for Semantic Segmentation of 2-D Aerial Image and 3-D LiDAR Point Cloud","authors":"Wei Liu;He Wang;Yicheng Qiao;Haopeng Zhang;Junli Yang","doi":"10.1109/JSTARS.2024.3511517","DOIUrl":null,"url":null,"abstract":"High-resolution remote sensing image segmentation has advanced significantly with 2-D convolutional neural networks and transformer-based models like SegFormer and Swin Transformer. Concurrently, the rapid development of 3-D convolution techniques has driven advancements in methods like PointNet and Kernel Point Convolution for 3-D LiDAR point cloud segmentation. Traditional fusion of aerial imagery and LiDAR data often relies on digital surface models or other features extracted from LiDAR point clouds, incorporating them as depth channels into image data. In this article, we propose a novel approach called Direct LiDAR-Aerial Fusion Network, which directly integrates multispectral images (RGB) and LiDAR point cloud data for semantic segmentation. Experiments on the modified GRSS18 dataset demonstrate that our method achieves an overall accuracy (OA) of 79.88%, outperforming conventional approaches. By fusing RGB and LiDAR features, our technique improves OA by 1.77% and mean Intersection over Union by 0.83%.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"1864-1875"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10778434","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10778434/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
High-resolution remote sensing image segmentation has advanced significantly with 2-D convolutional neural networks and transformer-based models like SegFormer and Swin Transformer. Concurrently, the rapid development of 3-D convolution techniques has driven advancements in methods like PointNet and Kernel Point Convolution for 3-D LiDAR point cloud segmentation. Traditional fusion of aerial imagery and LiDAR data often relies on digital surface models or other features extracted from LiDAR point clouds, incorporating them as depth channels into image data. In this article, we propose a novel approach called Direct LiDAR-Aerial Fusion Network, which directly integrates multispectral images (RGB) and LiDAR point cloud data for semantic segmentation. Experiments on the modified GRSS18 dataset demonstrate that our method achieves an overall accuracy (OA) of 79.88%, outperforming conventional approaches. By fusing RGB and LiDAR features, our technique improves OA by 1.77% and mean Intersection over Union by 0.83%.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.