{"title":"Dual-Polarimetric SAR Measurements to Observe Liquefaction Surface Manifestations","authors":"Ferdinando Nunziata;Anna Verlanti;Nicola Angelo Famiglietti;Maurizio Migliaccio;Annamaria Vicari","doi":"10.1109/JSTARS.2024.3509645","DOIUrl":null,"url":null,"abstract":"In this study, a methodology is proposed to use dual-polarimetric synthetic aperture radar (SAR) to identify the spatial distribution of soil liquefaction. The latter is a phenomenon that occurs in conjunction with seismic events of a magnitude generally higher than 5.5–6.0 and which affects loose sandy soils located below the water table level. The methodology consists of two steps: first the spatial distributions of soil liquefaction is estimated using a constant false alarm rate method applied to the SPAN metric, namely the total power associated with the measured polarimetric channels, which is ingested into a bitemporal approach to sort out dark areas not genuine. Second, the obtained masks are read in terms of the physical scattering mechanisms using a child parameter stemming from the eigendecomposition of the covariance matrix—namely the degree of polarization. The latter is evaluated using the coseismic scenes and contrasted with the preseismic one to have rough information on the time-variability of the scattering mechanisms occurred in the area affected by soil liquefaction. Finally, the obtained maps are qualitatively contrasted against state-of-the-art optical and interferometric SAR methodologies. Experimental results, obtained processing a time-series of ascending and descending Sentinel-1 SAR scenes acquired during the 2023 Türkiye–Syria earthquake, confirm the soundness of the proposed approach.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"1792-1801"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10777506","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10777506/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a methodology is proposed to use dual-polarimetric synthetic aperture radar (SAR) to identify the spatial distribution of soil liquefaction. The latter is a phenomenon that occurs in conjunction with seismic events of a magnitude generally higher than 5.5–6.0 and which affects loose sandy soils located below the water table level. The methodology consists of two steps: first the spatial distributions of soil liquefaction is estimated using a constant false alarm rate method applied to the SPAN metric, namely the total power associated with the measured polarimetric channels, which is ingested into a bitemporal approach to sort out dark areas not genuine. Second, the obtained masks are read in terms of the physical scattering mechanisms using a child parameter stemming from the eigendecomposition of the covariance matrix—namely the degree of polarization. The latter is evaluated using the coseismic scenes and contrasted with the preseismic one to have rough information on the time-variability of the scattering mechanisms occurred in the area affected by soil liquefaction. Finally, the obtained maps are qualitatively contrasted against state-of-the-art optical and interferometric SAR methodologies. Experimental results, obtained processing a time-series of ascending and descending Sentinel-1 SAR scenes acquired during the 2023 Türkiye–Syria earthquake, confirm the soundness of the proposed approach.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.