{"title":"A Satellite Selection Algorithm for GNSS-R InSAR Elevation Deformation Retrieval","authors":"Jingyan Yu;Yunlong Zhu;Zhixin Deng;Yanling Zhao","doi":"10.1109/LGRS.2024.3514913","DOIUrl":null,"url":null,"abstract":"The global navigation satellite system (GNSS) reflectometry synthetic aperture radar (SAR) interferometry (GNSS-R InSAR) system enables elevation deformation retrieval using a single satellite. However, variations in bistatic configurations and the generally low accuracy of most satellites necessitate a refined satellite selection method. Thus, this letter proposes a satellite selection algorithm for GNSS-R InSAR, aiming to optimize satellite selection and data acquisition time to improve the precision of elevation deformation monitoring. First, the interferometric phase model based on the repeat-pass concept was established using GPS L5 signals. Second, a satellite selection algorithm was proposed that incorporates constraints on resolution cells, spatial baseline, and phase sensitivity for elevation deformation, derived from an analysis of the repeat-pass spatial baseline of GNSS satellites, interferometric phase sensitivity, and the maximum deformation range. Third, 24 sets of repeat-pass data were collected, and the experimental results validate the effectiveness of this single-satellite selection approach.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10789209/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The global navigation satellite system (GNSS) reflectometry synthetic aperture radar (SAR) interferometry (GNSS-R InSAR) system enables elevation deformation retrieval using a single satellite. However, variations in bistatic configurations and the generally low accuracy of most satellites necessitate a refined satellite selection method. Thus, this letter proposes a satellite selection algorithm for GNSS-R InSAR, aiming to optimize satellite selection and data acquisition time to improve the precision of elevation deformation monitoring. First, the interferometric phase model based on the repeat-pass concept was established using GPS L5 signals. Second, a satellite selection algorithm was proposed that incorporates constraints on resolution cells, spatial baseline, and phase sensitivity for elevation deformation, derived from an analysis of the repeat-pass spatial baseline of GNSS satellites, interferometric phase sensitivity, and the maximum deformation range. Third, 24 sets of repeat-pass data were collected, and the experimental results validate the effectiveness of this single-satellite selection approach.