An ECG-Based Model for Left Ventricular Hypertrophy Detection: A Machine Learning Approach

IF 2.7 Q3 ENGINEERING, BIOMEDICAL
Marion Taconné;Valentina D.A. Corino;Luca Mainardi
{"title":"An ECG-Based Model for Left Ventricular Hypertrophy Detection: A Machine Learning Approach","authors":"Marion Taconné;Valentina D.A. Corino;Luca Mainardi","doi":"10.1109/OJEMB.2024.3509379","DOIUrl":null,"url":null,"abstract":"<italic>Goal:</i>\n Despite the high incidence of left ventricular hypertrophy (LVH), clinical LVH-electrocardiography (ECG) criteria remain unsatisfactory due to low sensitivity. We propose an automatic LVH detection method based on ECG-extracted features and machine learning. \n<italic>Methods:</i>\n ECG features were automatically extracted from two publicly available databases: PTB-XL with 2181 LVH and 9001 controls, and Georgia with 1012 LVH and 1387 controls. After preprocessing and feature extraction, the most relevant features from PTB-XL were selected to train three models: logistic regression, random forest (RF), and support vector machine (SVM). These classifiers, trained with selected features and a reduced set of five features, were evaluated on the Georgia database and compared with clinical LVH-ECG criteria. \n<italic>Results:</i>\n RF and SVM models showed accuracies above 90% and increased sensitivity to above 86%, compared to clinical criteria achieving 38% at maximum. \n<italic>Conclusions:</i>\n Automatic ECG-based LVH detection using machine learning outperforms conventional diagnostic criteria, benefiting clinical practice.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"219-226"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10772010","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10772010/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Goal: Despite the high incidence of left ventricular hypertrophy (LVH), clinical LVH-electrocardiography (ECG) criteria remain unsatisfactory due to low sensitivity. We propose an automatic LVH detection method based on ECG-extracted features and machine learning. Methods: ECG features were automatically extracted from two publicly available databases: PTB-XL with 2181 LVH and 9001 controls, and Georgia with 1012 LVH and 1387 controls. After preprocessing and feature extraction, the most relevant features from PTB-XL were selected to train three models: logistic regression, random forest (RF), and support vector machine (SVM). These classifiers, trained with selected features and a reduced set of five features, were evaluated on the Georgia database and compared with clinical LVH-ECG criteria. Results: RF and SVM models showed accuracies above 90% and increased sensitivity to above 86%, compared to clinical criteria achieving 38% at maximum. Conclusions: Automatic ECG-based LVH detection using machine learning outperforms conventional diagnostic criteria, benefiting clinical practice.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.50
自引率
3.40%
发文量
20
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信