Zhi Wang;Li Guo;Xialin Li;Xu Zhou;Jiebei Zhu;Chengshan Wang
{"title":"Multi-Swing PLL Synchronization Transient Stability of Grid-Connected Paralleled Converters","authors":"Zhi Wang;Li Guo;Xialin Li;Xu Zhou;Jiebei Zhu;Chengshan Wang","doi":"10.1109/TSTE.2024.3481417","DOIUrl":null,"url":null,"abstract":"During grid faults, the grid-connected paralleled converter systems is susceptible to a phase-locked loop (PLL) synchronization transient instability. Most existing studies focus on first-swing transient stability analysis using the equal-area criterion. However, achieving first-swing transient stability does not guarantee overall stability, as the system may still experience multi-swing transient instability. This paper analyzes the type of multi-swing transient instability issue from two aspects: transient instability mechanism and transient stability assessment. Firstly, the mechanism of multi-swing transient instability is revealed from the transient energy conversion point of view. Then, considering transient interactions between converters, the largest estimated domain of attraction (LEDA) is constructed utilizing the Takagi-Sugeno method. Using the LEDA, the multi-swing transient instability problem of the grid-connected paralleled converter systems is quantitatively analyzed. Finally, the theoretical results are verified based on the RT-LAB hardware-in-the-loop experimental platform.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 1","pages":"716-729"},"PeriodicalIF":8.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10720168/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
During grid faults, the grid-connected paralleled converter systems is susceptible to a phase-locked loop (PLL) synchronization transient instability. Most existing studies focus on first-swing transient stability analysis using the equal-area criterion. However, achieving first-swing transient stability does not guarantee overall stability, as the system may still experience multi-swing transient instability. This paper analyzes the type of multi-swing transient instability issue from two aspects: transient instability mechanism and transient stability assessment. Firstly, the mechanism of multi-swing transient instability is revealed from the transient energy conversion point of view. Then, considering transient interactions between converters, the largest estimated domain of attraction (LEDA) is constructed utilizing the Takagi-Sugeno method. Using the LEDA, the multi-swing transient instability problem of the grid-connected paralleled converter systems is quantitatively analyzed. Finally, the theoretical results are verified based on the RT-LAB hardware-in-the-loop experimental platform.
期刊介绍:
The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.