{"title":"Enhancing Image Security via Block Cyclic Construction and DNA-Based LFSR","authors":"Subhrajyoti Deb;Abhilash Das;Bhaskar Biswas;Joy Lal Sarkar;Surbhi Bhatia Khan;Saeed Alzahrani;Shalli Rani","doi":"10.1109/TCE.2024.3481260","DOIUrl":null,"url":null,"abstract":"The rapidly growing multimedia image data driven by real-time messaging technologies is particularly evident in applications such as autonomous vehicle tracking, smart cities, surveillance systems and many more. Considering images, data privacy and security are of paramount importance. Yet, many existing methods need to pay more attention to the specific challenges posed by chaotic maps, such as limited parameter coverage and insufficient chaotic behaviour. We present a novel method for image encryption that combines a cyclic block function during the confusion phase and a DNA-based Linear Feedback Shift Register (LFSR) in the diffusion phase to render the final cipher image. This process involves diagonal cyclic shifting and swapping of pixel blocks to minimize pixel correlation. DNA cryptography-based LFSR is particularly efficacious in high-quality pseudorandom number generation due to its robust statistical effects. Besides that, DNA-based operations improve the encryption speed, making the process more efficient. The proposed cryptosystem is validated through several methods, including histogram analysis, correlation assessment, entropy measurement, key sensitivity evaluation, and \n<inline-formula> <tex-math>$\\chi ^{2}$ </tex-math></inline-formula>\n testing. Our algorithm offers superior security and efficiency, outperforming established schemes in terms of security and robustness.","PeriodicalId":13208,"journal":{"name":"IEEE Transactions on Consumer Electronics","volume":"70 3","pages":"5516-5523"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Consumer Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10716778/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The rapidly growing multimedia image data driven by real-time messaging technologies is particularly evident in applications such as autonomous vehicle tracking, smart cities, surveillance systems and many more. Considering images, data privacy and security are of paramount importance. Yet, many existing methods need to pay more attention to the specific challenges posed by chaotic maps, such as limited parameter coverage and insufficient chaotic behaviour. We present a novel method for image encryption that combines a cyclic block function during the confusion phase and a DNA-based Linear Feedback Shift Register (LFSR) in the diffusion phase to render the final cipher image. This process involves diagonal cyclic shifting and swapping of pixel blocks to minimize pixel correlation. DNA cryptography-based LFSR is particularly efficacious in high-quality pseudorandom number generation due to its robust statistical effects. Besides that, DNA-based operations improve the encryption speed, making the process more efficient. The proposed cryptosystem is validated through several methods, including histogram analysis, correlation assessment, entropy measurement, key sensitivity evaluation, and
$\chi ^{2}$
testing. Our algorithm offers superior security and efficiency, outperforming established schemes in terms of security and robustness.
期刊介绍:
The main focus for the IEEE Transactions on Consumer Electronics is the engineering and research aspects of the theory, design, construction, manufacture or end use of mass market electronics, systems, software and services for consumers.