{"title":"Two-Level Distributed Consensus Control of Multiple Wind Farms for Fast Frequency Support","authors":"Kangyi Sun;Hongyu Zhou;Wei Yao;Yongxin Xiong;Yahan Yao;Jinyu Wen","doi":"10.1109/TSTE.2024.3468371","DOIUrl":null,"url":null,"abstract":"The neighboring wind farms have great frequency support potential. The wind turbine generators (WTGs) in these wind farms are influenced by wake effects and have different frequency support capabilities. In order to fully utilize the WTGs' support capabilities under different operating states, this paper proposes a two-level distributed consensus (TLDC) control to cooperate all the WTGs. Level I is leader-follower control, which is equipped within the wind farms. Level II is leaderless control which is used among the wind farms. This method is able to assign different values of power commands to different WTGs in the system to achieve better frequency support effect and stability. Based on MATLAB/Simulink and Opal-RT real-time simulation platforms, the two-area power system and Guangshui system (100% renewable energy power system) are analyzed, respectively. Simulation results show that the proposed TLDC method has a better effect compared with other frequency support methods. It can also flexibly respond to communication interruptions and delays.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 1","pages":"530-545"},"PeriodicalIF":8.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10694712/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The neighboring wind farms have great frequency support potential. The wind turbine generators (WTGs) in these wind farms are influenced by wake effects and have different frequency support capabilities. In order to fully utilize the WTGs' support capabilities under different operating states, this paper proposes a two-level distributed consensus (TLDC) control to cooperate all the WTGs. Level I is leader-follower control, which is equipped within the wind farms. Level II is leaderless control which is used among the wind farms. This method is able to assign different values of power commands to different WTGs in the system to achieve better frequency support effect and stability. Based on MATLAB/Simulink and Opal-RT real-time simulation platforms, the two-area power system and Guangshui system (100% renewable energy power system) are analyzed, respectively. Simulation results show that the proposed TLDC method has a better effect compared with other frequency support methods. It can also flexibly respond to communication interruptions and delays.
期刊介绍:
The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.