Two-Level Distributed Consensus Control of Multiple Wind Farms for Fast Frequency Support

IF 8.6 1区 工程技术 Q1 ENERGY & FUELS
Kangyi Sun;Hongyu Zhou;Wei Yao;Yongxin Xiong;Yahan Yao;Jinyu Wen
{"title":"Two-Level Distributed Consensus Control of Multiple Wind Farms for Fast Frequency Support","authors":"Kangyi Sun;Hongyu Zhou;Wei Yao;Yongxin Xiong;Yahan Yao;Jinyu Wen","doi":"10.1109/TSTE.2024.3468371","DOIUrl":null,"url":null,"abstract":"The neighboring wind farms have great frequency support potential. The wind turbine generators (WTGs) in these wind farms are influenced by wake effects and have different frequency support capabilities. In order to fully utilize the WTGs' support capabilities under different operating states, this paper proposes a two-level distributed consensus (TLDC) control to cooperate all the WTGs. Level I is leader-follower control, which is equipped within the wind farms. Level II is leaderless control which is used among the wind farms. This method is able to assign different values of power commands to different WTGs in the system to achieve better frequency support effect and stability. Based on MATLAB/Simulink and Opal-RT real-time simulation platforms, the two-area power system and Guangshui system (100% renewable energy power system) are analyzed, respectively. Simulation results show that the proposed TLDC method has a better effect compared with other frequency support methods. It can also flexibly respond to communication interruptions and delays.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 1","pages":"530-545"},"PeriodicalIF":8.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10694712/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The neighboring wind farms have great frequency support potential. The wind turbine generators (WTGs) in these wind farms are influenced by wake effects and have different frequency support capabilities. In order to fully utilize the WTGs' support capabilities under different operating states, this paper proposes a two-level distributed consensus (TLDC) control to cooperate all the WTGs. Level I is leader-follower control, which is equipped within the wind farms. Level II is leaderless control which is used among the wind farms. This method is able to assign different values of power commands to different WTGs in the system to achieve better frequency support effect and stability. Based on MATLAB/Simulink and Opal-RT real-time simulation platforms, the two-area power system and Guangshui system (100% renewable energy power system) are analyzed, respectively. Simulation results show that the proposed TLDC method has a better effect compared with other frequency support methods. It can also flexibly respond to communication interruptions and delays.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信