{"title":"Integrating Maker Education into the Research Project of Undergraduate Chemistry Program: Low-Cost Arduino-Based 3D Printed Autotitrator","authors":"Kheng Soo Tay*, and , Jeng Lu Eng, ","doi":"10.1021/acs.jchemed.4c0048610.1021/acs.jchemed.4c00486","DOIUrl":null,"url":null,"abstract":"<p >This project was designed to incorporate maker education into the final-year research project of the undergraduate chemistry program. It involves taking a project from concept to prototype through project-based learning, emphasizing hands-on learning experiences to solve real-world problems. A final-year undergraduate chemistry student was involved in this work. This student identified a problem through a literature review, designed the necessary equipment, built the prototype to address the identified problem, and assessed its performance using statistical methods. The student successfully developed a low-cost autotitrator using Arduino Uno-compatible microcontrollers, a pH sensor, an open-source PLX-DAQ data acquisition system, 3D printing technology, and various electronic components for determining the percentage of total acidity in fruit juices. Engaging in this project significantly enhanced the student’s technical skills and developed problem-solving abilities, critical thinking, and creativity, which are essential for the future workforce. Additionally, this project enables chemistry students to gain a deeper understanding of the hardware and equipment development process. Moreover, it trains students in utilizing open-source software and identifying cost-effective solutions for building prototypes to solve real-world problems. The concept of this project is adaptable and can be applied to train students in designing and building various chemistry-related equipment.</p>","PeriodicalId":43,"journal":{"name":"Journal of Chemical Education","volume":"101 12","pages":"5430–5436 5430–5436"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Education","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00486","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This project was designed to incorporate maker education into the final-year research project of the undergraduate chemistry program. It involves taking a project from concept to prototype through project-based learning, emphasizing hands-on learning experiences to solve real-world problems. A final-year undergraduate chemistry student was involved in this work. This student identified a problem through a literature review, designed the necessary equipment, built the prototype to address the identified problem, and assessed its performance using statistical methods. The student successfully developed a low-cost autotitrator using Arduino Uno-compatible microcontrollers, a pH sensor, an open-source PLX-DAQ data acquisition system, 3D printing technology, and various electronic components for determining the percentage of total acidity in fruit juices. Engaging in this project significantly enhanced the student’s technical skills and developed problem-solving abilities, critical thinking, and creativity, which are essential for the future workforce. Additionally, this project enables chemistry students to gain a deeper understanding of the hardware and equipment development process. Moreover, it trains students in utilizing open-source software and identifying cost-effective solutions for building prototypes to solve real-world problems. The concept of this project is adaptable and can be applied to train students in designing and building various chemistry-related equipment.
期刊介绍:
The Journal of Chemical Education is the official journal of the Division of Chemical Education of the American Chemical Society, co-published with the American Chemical Society Publications Division. Launched in 1924, the Journal of Chemical Education is the world’s premier chemical education journal. The Journal publishes peer-reviewed articles and related information as a resource to those in the field of chemical education and to those institutions that serve them. JCE typically addresses chemical content, activities, laboratory experiments, instructional methods, and pedagogies. The Journal serves as a means of communication among people across the world who are interested in the teaching and learning of chemistry. This includes instructors of chemistry from middle school through graduate school, professional staff who support these teaching activities, as well as some scientists in commerce, industry, and government.