Photosensitizing Properties of the Topical Retinoid Drug Adapalene

IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL
Juan A. Soler-Orenes, Gemma M. Rodríguez-Muñiz, Javier Hernández-Gil, Miguel A. Miranda, Inmaculada Andreu and Virginie Lhiaubet-Vallet*, 
{"title":"Photosensitizing Properties of the Topical Retinoid Drug Adapalene","authors":"Juan A. Soler-Orenes,&nbsp;Gemma M. Rodríguez-Muñiz,&nbsp;Javier Hernández-Gil,&nbsp;Miguel A. Miranda,&nbsp;Inmaculada Andreu and Virginie Lhiaubet-Vallet*,&nbsp;","doi":"10.1021/acs.chemrestox.4c0038410.1021/acs.chemrestox.4c00384","DOIUrl":null,"url":null,"abstract":"<p >Photoreactivity is an important issue for topical drugs especially when these are applied on the sun-exposed skin area. In this context, third-generation retinoids are of special interest due to their conjugated chemical structure and their use in the treatment of acne. Herein, the phototoxic potential of one of these drugs, adapalene, is established using an in vitro 3T3 Neutral Red Uptake (NRU) test. Photophysical studies demonstrate the involvement of a Type II process with an efficient formation of singlet oxygen. Interestingly, quenching of the adapalene singlet manifold by oxygen leads to an increased production of this reactive oxygen species through the tagged O<sub>2</sub>-enhanced intersystem crossing process. Taken together, these results are relevant from a toxicological point of view as adapalene could be considered as a double-edged sword: it can be at the origin of undesired skin photosensitivity reactions or be considered as a candidate for topical photodynamic therapy.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":"37 12","pages":"2013–2021 2013–2021"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemrestox.4c00384","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Photoreactivity is an important issue for topical drugs especially when these are applied on the sun-exposed skin area. In this context, third-generation retinoids are of special interest due to their conjugated chemical structure and their use in the treatment of acne. Herein, the phototoxic potential of one of these drugs, adapalene, is established using an in vitro 3T3 Neutral Red Uptake (NRU) test. Photophysical studies demonstrate the involvement of a Type II process with an efficient formation of singlet oxygen. Interestingly, quenching of the adapalene singlet manifold by oxygen leads to an increased production of this reactive oxygen species through the tagged O2-enhanced intersystem crossing process. Taken together, these results are relevant from a toxicological point of view as adapalene could be considered as a double-edged sword: it can be at the origin of undesired skin photosensitivity reactions or be considered as a candidate for topical photodynamic therapy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
7.30%
发文量
215
审稿时长
3.5 months
期刊介绍: Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信