{"title":"Advances in Development of Drug Treatment for Hemophilia with Inhibitors","authors":"Surasak Wichaiyo*, ","doi":"10.1021/acsptsci.4c0056010.1021/acsptsci.4c00560","DOIUrl":null,"url":null,"abstract":"<p >Patients with hemophilia A and B who have inhibitors face limited treatment options, because replacement therapy with clotting factor VIII or IX concentrates is ineffective, particularly for patients with high-titer inhibitors. Current mainstay therapies include immune tolerance induction (through frequent injections of clotting factor VIII or IX concentrates) to eradicate inhibitors and bypassing agents (such as recombinant activated clotting factor VII and activated prothrombin complex concentrates) for the prevention and treatment of bleeding episodes. The use of these agents typically requires intravenous injections and sometimes hospitalization, which can be burdensome for patients. More recently, emicizumab, a bispecific antibody that mimics the function of activated clotting factor VIII, has demonstrated favorable efficacy for prophylaxis in patients with hemophilia A and inhibitors, representing a promising new therapeutic strategy. Ongoing research aims to discover and develop easy-to-use nonfactor agents for managing hemophilia with inhibitors. This review summarizes the current understanding of the pathophysiology of inhibitor development in hemophilia, outlines existing treatment options, and discusses advancements in novel therapeutic biologics, including a recombinant activated clotting factor VII variant (marzeptacog alfa), a new bispecific antibody (Mim8), antitissue factor pathway inhibitor antibodies (concizumab and marstacimab), and small interfering RNA targeting antithrombin (fitusiran). All of these agents are administered subcutaneously, with some offering the convenience of less frequent dosing (e.g., weekly or monthly). These potential drug candidates may provide significant benefits for the prophylaxis or treatment of bleeding disorders in patients with hemophilia and inhibitors.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 12","pages":"3795–3803 3795–3803"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsptsci.4c00560","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsptsci.4c00560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Patients with hemophilia A and B who have inhibitors face limited treatment options, because replacement therapy with clotting factor VIII or IX concentrates is ineffective, particularly for patients with high-titer inhibitors. Current mainstay therapies include immune tolerance induction (through frequent injections of clotting factor VIII or IX concentrates) to eradicate inhibitors and bypassing agents (such as recombinant activated clotting factor VII and activated prothrombin complex concentrates) for the prevention and treatment of bleeding episodes. The use of these agents typically requires intravenous injections and sometimes hospitalization, which can be burdensome for patients. More recently, emicizumab, a bispecific antibody that mimics the function of activated clotting factor VIII, has demonstrated favorable efficacy for prophylaxis in patients with hemophilia A and inhibitors, representing a promising new therapeutic strategy. Ongoing research aims to discover and develop easy-to-use nonfactor agents for managing hemophilia with inhibitors. This review summarizes the current understanding of the pathophysiology of inhibitor development in hemophilia, outlines existing treatment options, and discusses advancements in novel therapeutic biologics, including a recombinant activated clotting factor VII variant (marzeptacog alfa), a new bispecific antibody (Mim8), antitissue factor pathway inhibitor antibodies (concizumab and marstacimab), and small interfering RNA targeting antithrombin (fitusiran). All of these agents are administered subcutaneously, with some offering the convenience of less frequent dosing (e.g., weekly or monthly). These potential drug candidates may provide significant benefits for the prophylaxis or treatment of bleeding disorders in patients with hemophilia and inhibitors.
期刊介绍:
ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered.
ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition.
Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.