Diego Ruiz-Sobremazas, Ana Cristina Abreu, Ángeles Prados-Pardo, Elena Martín-González, Ana Isabel Tristán, Ignacio Fernández, Margarita Moreno and Santiago Mora*,
{"title":"From Nutritional Patterns to Behavior: High-Fat Diet Influences on Inhibitory Control, Brain Gene Expression, and Metabolomics in Rats","authors":"Diego Ruiz-Sobremazas, Ana Cristina Abreu, Ángeles Prados-Pardo, Elena Martín-González, Ana Isabel Tristán, Ignacio Fernández, Margarita Moreno and Santiago Mora*, ","doi":"10.1021/acschemneuro.4c0029710.1021/acschemneuro.4c00297","DOIUrl":null,"url":null,"abstract":"<p >Impulsive and compulsive behaviors are associated with inhibitory control deficits. Diet plays a pivotal role in normal development, impacting both physiology and behavior. However, the specific effects of a high-fat diet (HFD) on inhibitory control have not received adequate attention. This study aimed to explore how exposure to a HFD from postnatal day (PND) 33 to PND77 affects impulsive and compulsive behaviors. The experiment involved 40 Wistar rats subjected to HFD or chow diets. Several tasks were employed to assess behavior, including variable delay to signal (VDS), five choice serial reaction time task (5-CSRTT), delay discounting task (DDT), and rodent gambling task (rGT). Genetic analyses were performed on the frontal cortex, and metabolomics and fatty acid profiles were examined by using stool samples collected on PND298. Our results showed that the HFD group exhibited increased motor impulsive behaviors while not affecting cognitive impulsivity. Surprisingly, reduced impulsive decision-making was shown in the HFD group. Furthermore, abnormal brain plasticity and dopamine gene regulation were shown in the frontal cortex, while metabolomics revealed abnormal fatty acid levels.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"15 24","pages":"4369–4382 4369–4382"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acschemneuro.4c00297","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acschemneuro.4c00297","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Impulsive and compulsive behaviors are associated with inhibitory control deficits. Diet plays a pivotal role in normal development, impacting both physiology and behavior. However, the specific effects of a high-fat diet (HFD) on inhibitory control have not received adequate attention. This study aimed to explore how exposure to a HFD from postnatal day (PND) 33 to PND77 affects impulsive and compulsive behaviors. The experiment involved 40 Wistar rats subjected to HFD or chow diets. Several tasks were employed to assess behavior, including variable delay to signal (VDS), five choice serial reaction time task (5-CSRTT), delay discounting task (DDT), and rodent gambling task (rGT). Genetic analyses were performed on the frontal cortex, and metabolomics and fatty acid profiles were examined by using stool samples collected on PND298. Our results showed that the HFD group exhibited increased motor impulsive behaviors while not affecting cognitive impulsivity. Surprisingly, reduced impulsive decision-making was shown in the HFD group. Furthermore, abnormal brain plasticity and dopamine gene regulation were shown in the frontal cortex, while metabolomics revealed abnormal fatty acid levels.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research