Tingyan Huang, Yu Zhang, Jia Sun, Yinsheng Gu, Fang Wang, Ying-Wei Lu and Paifeng Luo*,
{"title":"Hybrid Chemical Vapor Deposition of Mixed-Cation MAxFA1–xPbI3-yBry Perovskites via Lead Bromide Doping for High-Performance Photovoltaic Devices","authors":"Tingyan Huang, Yu Zhang, Jia Sun, Yinsheng Gu, Fang Wang, Ying-Wei Lu and Paifeng Luo*, ","doi":"10.1021/acsaem.4c0258410.1021/acsaem.4c02584","DOIUrl":null,"url":null,"abstract":"<p >In recent years, there has been some interest in the use of chemical vapor deposition (CVD) for the fabrication of perovskite solar cells (PSCs) due to its satisfactory film-quality, high controllability and consistency, low equipment cost, and easy industrial scale-up. In this paper, the mixed-cation MA<sub><i>x</i></sub>FA<sub>1–<i>x</i></sub>PbI<sub>3–<i>y</i></sub>Br<sub><i>y</i></sub> perovskite light absorbing films were first deposited via a lead bromide (PbBr<sub>2</sub>) precursor doped CVD process, and the effect of bromine content on its material phase composition, film morphology, optical band gap, device photovoltaic characteristic, charge recombination, and carrier transport property were systematically studied. The experimental results show that introducing an appropriate PbBr<sub>2</sub> doping amount can inhibit the formation of undesirable nonphotoactive γ phase, which enhances the crystallization ability, increases the grain size and material band gap of perovskite films, and then suppresses the carrier recombination, reduces the contact resistance, and facilitates the carrier extraction and transport at the interface. This ultimately leads to an improvement in the power conversion efficiency (PCE) and stability of the PSCs. Consequently, the optimized MA<sub><i>x</i></sub>FA<sub>1–<i>x</i></sub>PbI<sub>3–<i>y</i></sub>Br<sub><i>y</i></sub> PSCs with 0.05 M PbBr<sub>2</sub> doping achieve an impressive PCE of 17.94%, which is significantly higher than that of the undoped devices (16.69%) and reaches the high level of PSCs with a hybrid chemical vapor deposition (HCVD) method.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"7 23","pages":"11225–11232 11225–11232"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02584","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, there has been some interest in the use of chemical vapor deposition (CVD) for the fabrication of perovskite solar cells (PSCs) due to its satisfactory film-quality, high controllability and consistency, low equipment cost, and easy industrial scale-up. In this paper, the mixed-cation MAxFA1–xPbI3–yBry perovskite light absorbing films were first deposited via a lead bromide (PbBr2) precursor doped CVD process, and the effect of bromine content on its material phase composition, film morphology, optical band gap, device photovoltaic characteristic, charge recombination, and carrier transport property were systematically studied. The experimental results show that introducing an appropriate PbBr2 doping amount can inhibit the formation of undesirable nonphotoactive γ phase, which enhances the crystallization ability, increases the grain size and material band gap of perovskite films, and then suppresses the carrier recombination, reduces the contact resistance, and facilitates the carrier extraction and transport at the interface. This ultimately leads to an improvement in the power conversion efficiency (PCE) and stability of the PSCs. Consequently, the optimized MAxFA1–xPbI3–yBry PSCs with 0.05 M PbBr2 doping achieve an impressive PCE of 17.94%, which is significantly higher than that of the undoped devices (16.69%) and reaches the high level of PSCs with a hybrid chemical vapor deposition (HCVD) method.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.