The Exceptional Tandem Catalyst Pt1Pd1 NPs Embedded on a Fe3O4-Polypyrrole Composite Serving in Both the Ethanol Oxidation Reaction and Oxygen Reduction Reaction in Direct Ethanol Fuel Cells

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Rajib Adhikary,  and , Jayati Datta*, 
{"title":"The Exceptional Tandem Catalyst Pt1Pd1 NPs Embedded on a Fe3O4-Polypyrrole Composite Serving in Both the Ethanol Oxidation Reaction and Oxygen Reduction Reaction in Direct Ethanol Fuel Cells","authors":"Rajib Adhikary,&nbsp; and ,&nbsp;Jayati Datta*,&nbsp;","doi":"10.1021/acsaem.4c0181910.1021/acsaem.4c01819","DOIUrl":null,"url":null,"abstract":"<p >The present study explores the contributory benefits of PtPd catalyst nanoparticles supported on a mixed valence iron oxide (Fe<sub>3</sub>O<sub>4</sub>) and polypyrrole (PPy) composite for validation in both the ethanol oxidation reaction and oxygen reduction reaction (ORR) in alkaline medium for low temperature direct ethanol fuel cells (DEFCs). The high electrochemical surface area (ECSA) for PtPd/PPy-Fe<sub>3</sub>O<sub>4</sub> with smart intervention of Fe<sub>3</sub>O<sub>4</sub> directly/indirectly in the EOR and ORR sequences makes this distinct catalyst a highly preferred choice in direct ethanol fuel cells with respect to reduced polarization loss, substantial current density output, and greater stability compared to the usual Pt or Pd single nanocatalysts supported over carbon, while the conducting polymer present in the composite matrix enhances the charge transfer ability within the direct ethanol fuel cell framework. The catalyst nanoparticles are found to be in the size range 4–5 nm, as revealed from structure and morphology studies. Ion chromatographic analysis quantifies the reaction intermediates, acetate and carbonate, to the extent of 366 and 251 ppm using 1 M ethanol solution, while a low yield of H<sub>2</sub>O<sub>2</sub> is a testament to the major utility of the combinatorial approach in the ORR. The studies involved morphology determined through electron microscopy and electrochemical characterization with the help of potentiodynamic polarization and RDE-RRDE techniques. The catalytic preeminence of the nanostructured PtPd/PPy-Fe<sub>3</sub>O<sub>4</sub> was manifested by the facile electrode kinetics at the anode and cathode, the low yield of H<sub>2</sub>O<sub>2</sub> in the ORR, and the appreciable power density output of 47.65 mW/cm<sup>2</sup> of the complete cell bearing enormous mass activity for both the EOR and ORR. This novel attempt of introducing the single robust catalyst at both ends ensures better catalyst utilization, imparts affordability, and avoids carbon corrosion in the fuel cell environment.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"7 23","pages":"10950–10959 10950–10959"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c01819","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The present study explores the contributory benefits of PtPd catalyst nanoparticles supported on a mixed valence iron oxide (Fe3O4) and polypyrrole (PPy) composite for validation in both the ethanol oxidation reaction and oxygen reduction reaction (ORR) in alkaline medium for low temperature direct ethanol fuel cells (DEFCs). The high electrochemical surface area (ECSA) for PtPd/PPy-Fe3O4 with smart intervention of Fe3O4 directly/indirectly in the EOR and ORR sequences makes this distinct catalyst a highly preferred choice in direct ethanol fuel cells with respect to reduced polarization loss, substantial current density output, and greater stability compared to the usual Pt or Pd single nanocatalysts supported over carbon, while the conducting polymer present in the composite matrix enhances the charge transfer ability within the direct ethanol fuel cell framework. The catalyst nanoparticles are found to be in the size range 4–5 nm, as revealed from structure and morphology studies. Ion chromatographic analysis quantifies the reaction intermediates, acetate and carbonate, to the extent of 366 and 251 ppm using 1 M ethanol solution, while a low yield of H2O2 is a testament to the major utility of the combinatorial approach in the ORR. The studies involved morphology determined through electron microscopy and electrochemical characterization with the help of potentiodynamic polarization and RDE-RRDE techniques. The catalytic preeminence of the nanostructured PtPd/PPy-Fe3O4 was manifested by the facile electrode kinetics at the anode and cathode, the low yield of H2O2 in the ORR, and the appreciable power density output of 47.65 mW/cm2 of the complete cell bearing enormous mass activity for both the EOR and ORR. This novel attempt of introducing the single robust catalyst at both ends ensures better catalyst utilization, imparts affordability, and avoids carbon corrosion in the fuel cell environment.

Abstract Image

嵌入 Fe3O4 聚吡咯复合材料的特殊串联催化剂 Pt1Pd1 NPs 在直接乙醇燃料电池的乙醇氧化反应和氧还原反应中都能发挥作用
本研究探讨了混合价氧化铁(Fe3O4)和聚吡罗(PPy)复合材料负载的PtPd催化剂纳米颗粒对低温直接乙醇燃料电池(defc)的乙醇氧化反应和氧还原反应(ORR)的促进作用。PtPd/ py -Fe3O4的高电化学表面积(ECSA)与Fe3O4在EOR和ORR序列中的直接/间接智能干预使这种独特的催化剂成为直接乙醇燃料电池的首选,与通常的碳负载的Pt或Pd单纳米催化剂相比,它具有降低极化损失、大量电流密度输出和更高的稳定性。而导电聚合物存在于复合基体中,增强了直接乙醇燃料电池框架内的电荷转移能力。从结构和形貌研究中发现,催化剂纳米颗粒的尺寸范围在4-5 nm之间。离子色谱分析定量了反应中间体,醋酸酯和碳酸盐,在1 M乙醇溶液中达到366和251 ppm的程度,而H2O2的低产率证明了组合方法在ORR中的主要应用。研究包括通过电子显微镜确定的形态和借助动电位极化和RDE-RRDE技术进行的电化学表征。纳米结构PtPd/ py - fe3o4的催化优势体现在阳极和阴极的电极动力学,ORR中H2O2的低产率,以及47.65 mW/cm2的可观功率密度输出,对EOR和ORR都具有巨大的质量活性。这种在两端引入单一坚固催化剂的新颖尝试确保了更好的催化剂利用率,赋予了可负担性,并避免了燃料电池环境中的碳腐蚀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信