Enhanced Anhydrous Proton Conductivity in Azole Phosphonic Acid Mixtures

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Zitan Huang, Michelle L. Lehmann, Amit Bhattacharya, Yifan Liu, Valentino R. Cooper, Raphaële J. Clément, Tomonori Saito, Michael A. Hickner and Ralph H. Colby*, 
{"title":"Enhanced Anhydrous Proton Conductivity in Azole Phosphonic Acid Mixtures","authors":"Zitan Huang,&nbsp;Michelle L. Lehmann,&nbsp;Amit Bhattacharya,&nbsp;Yifan Liu,&nbsp;Valentino R. Cooper,&nbsp;Raphaële J. Clément,&nbsp;Tomonori Saito,&nbsp;Michael A. Hickner and Ralph H. Colby*,&nbsp;","doi":"10.1021/acsaem.4c0165410.1021/acsaem.4c01654","DOIUrl":null,"url":null,"abstract":"<p >Azole molecules are investigated as potential candidates for proton conductors under anhydrous conditions. Since 1,2,3-triazole has the lowest melting point (<i>T</i><sub>m</sub> = 17 °C), it was blended with three phosphonic acid-containing molecules (small molecules with one and two phosphonic acids per molecule and a phosphonic acid polymer) to provide a source of excess protons to enhance the proton conductivity of the blends. We study a wide range of compositions in each system to find that these three mixtures show a maximum proton conductivity at moderate doping compositions, approximately 5–10 azole molecules per phosphonic acid group. Using NMR diffusometry, we show that the protons bonded to nitrogen move faster than the protons bonded to carbons of 1,2,3-triazole, suggesting proton hopping between azole proton carriers. Given the high proton conductivity at 90 °C of the best mixtures, in the range of 20–60 mS/cm, this work provides a path forward for future work in anhydrous proton-conducting polymer membranes. Additionally, Raman spectroscopy was used to accurately determine the molar percentage of protonated 1,2,3-triazole. Combining that with the proton diffusion results, we find that the phosphonic acid polymer shows the most proton hopping at low acid content.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"7 23","pages":"10826–10833 10826–10833"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c01654","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Azole molecules are investigated as potential candidates for proton conductors under anhydrous conditions. Since 1,2,3-triazole has the lowest melting point (Tm = 17 °C), it was blended with three phosphonic acid-containing molecules (small molecules with one and two phosphonic acids per molecule and a phosphonic acid polymer) to provide a source of excess protons to enhance the proton conductivity of the blends. We study a wide range of compositions in each system to find that these three mixtures show a maximum proton conductivity at moderate doping compositions, approximately 5–10 azole molecules per phosphonic acid group. Using NMR diffusometry, we show that the protons bonded to nitrogen move faster than the protons bonded to carbons of 1,2,3-triazole, suggesting proton hopping between azole proton carriers. Given the high proton conductivity at 90 °C of the best mixtures, in the range of 20–60 mS/cm, this work provides a path forward for future work in anhydrous proton-conducting polymer membranes. Additionally, Raman spectroscopy was used to accurately determine the molar percentage of protonated 1,2,3-triazole. Combining that with the proton diffusion results, we find that the phosphonic acid polymer shows the most proton hopping at low acid content.

Abstract Image

唑膦酸混合物中无水质子电导率的增强
在无水条件下,研究了唑分子作为质子导体的潜在候选者。由于1,2,3-三唑具有最低的熔点(Tm = 17℃),因此将其与三种含膦酸的分子(每个分子含有一种和两种膦酸的小分子以及一种膦酸聚合物)共混,以提供多余的质子源,以提高共混物的质子导电性。我们研究了每个体系中广泛的成分,发现这三种混合物在适度掺杂成分时显示出最大的质子电导率,每个膦酸基团大约5-10个唑分子。通过核磁共振扩散测量,我们发现1,2,3-三唑的氮原子上的质子比碳原子上的质子移动得快,这表明质子在氮原子质子载体之间跳跃。考虑到最佳混合物在90°C时的高质子导电性,在20-60 mS/cm范围内,这项工作为未来无水质子导电聚合物膜的研究提供了一条前进的道路。此外,利用拉曼光谱准确测定了质子化1,2,3-三唑的摩尔百分数。结合质子扩散的结果,我们发现膦酸聚合物在低酸含量时表现出最多的质子跳跃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信