Morphology-Dependent Enhancement of Electrocatalytic Nitrogen Reduction Activity Using Iron Phthalocyanine Nanostructures

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Sougata Sarkar, Nilmadhab Mukherjee, Sayed Julphukar Alli, Parnab Bhabak, Ashadul Adalder, Sourav Mukherjee, Ranjit Thapa* and Uttam Kumar Ghorai*, 
{"title":"Morphology-Dependent Enhancement of Electrocatalytic Nitrogen Reduction Activity Using Iron Phthalocyanine Nanostructures","authors":"Sougata Sarkar,&nbsp;Nilmadhab Mukherjee,&nbsp;Sayed Julphukar Alli,&nbsp;Parnab Bhabak,&nbsp;Ashadul Adalder,&nbsp;Sourav Mukherjee,&nbsp;Ranjit Thapa* and Uttam Kumar Ghorai*,&nbsp;","doi":"10.1021/acsaem.4c0220410.1021/acsaem.4c02204","DOIUrl":null,"url":null,"abstract":"<p >Ammonia is one of the most essential raw materials for daily life applications. As an alternative to the Haber–Bosch process, scientists are focusing on an important domain of electrocatalysis for ammonia production. Herein, we approached a morphological adaptation of the electrocatalyst (iron phthalocyanine, FePc) based on hollow nanotube and rod types; the catalyst showed different N<sub>2</sub>-to-NH<sub>3</sub> productivity. Under ambient conditions, FePc nanorods showed a good ammonia yield rate and Faradaic efficiency (FE) of 323.44 μg h<sup>–1</sup> mg<sub>cat.</sub><sup>–1</sup> and 23.33%, respectively, at −0.4 V vs RHE in 0.05 M H<sub>2</sub>SO<sub>4</sub>. However, when the rod was adapted to a hollow nanotube structure by control of the temperature and time parameters, the ammonia productivity further improved. Under the same conditions, FePc nanotubes showed an excellent ammonia yield rate of 425.46 μg h<sup>–1</sup> mg<sub>cat.</sub><sup>–1</sup> and a corresponding FE of 23.61% at −0.4 V vs RHE. In addition to experimental observations, theoretical analysis using density functional theory is also provided to establish the reaction mechanism of ammonia synthesis from nitrogen reduction reaction (NRR) using an FePc electrocatalyst. This work opens an avenue showing geometric structural induction of electrocatalytic activity toward future sustainable ammonia production.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"7 23","pages":"11094–11102 11094–11102"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02204","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ammonia is one of the most essential raw materials for daily life applications. As an alternative to the Haber–Bosch process, scientists are focusing on an important domain of electrocatalysis for ammonia production. Herein, we approached a morphological adaptation of the electrocatalyst (iron phthalocyanine, FePc) based on hollow nanotube and rod types; the catalyst showed different N2-to-NH3 productivity. Under ambient conditions, FePc nanorods showed a good ammonia yield rate and Faradaic efficiency (FE) of 323.44 μg h–1 mgcat.–1 and 23.33%, respectively, at −0.4 V vs RHE in 0.05 M H2SO4. However, when the rod was adapted to a hollow nanotube structure by control of the temperature and time parameters, the ammonia productivity further improved. Under the same conditions, FePc nanotubes showed an excellent ammonia yield rate of 425.46 μg h–1 mgcat.–1 and a corresponding FE of 23.61% at −0.4 V vs RHE. In addition to experimental observations, theoretical analysis using density functional theory is also provided to establish the reaction mechanism of ammonia synthesis from nitrogen reduction reaction (NRR) using an FePc electrocatalyst. This work opens an avenue showing geometric structural induction of electrocatalytic activity toward future sustainable ammonia production.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信