Evaluation of the Neuroprotective Effect of Total Glycosides of Cistanche deserticola and Investigation of Novel Brain-Targeting Natural MAO-B Inhibitors

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xinyuan Zhai, Wenyu Xie, Muhammad Danish Yaqoob, Feng Zhao, Hong Zhe Zhu, Shang Shen Yang, Kai Wang, Xumei Wang, Hai Chao Wang and Xiaoming Wang*, 
{"title":"Evaluation of the Neuroprotective Effect of Total Glycosides of Cistanche deserticola and Investigation of Novel Brain-Targeting Natural MAO-B Inhibitors","authors":"Xinyuan Zhai,&nbsp;Wenyu Xie,&nbsp;Muhammad Danish Yaqoob,&nbsp;Feng Zhao,&nbsp;Hong Zhe Zhu,&nbsp;Shang Shen Yang,&nbsp;Kai Wang,&nbsp;Xumei Wang,&nbsp;Hai Chao Wang and Xiaoming Wang*,&nbsp;","doi":"10.1021/acschemneuro.4c0060810.1021/acschemneuro.4c00608","DOIUrl":null,"url":null,"abstract":"<p >In this study, we investigated the role of total glycosides of <i>Cistanche deserticola</i> (TC) in MPTP-induced neuronal injury. Further, we screened potential inhibitory components of monoamine oxidase B (MAO-B). The study results indicate that TC may improve movement disorders and apoptosis of dopamine (DA) neurons by inhibiting MAO-B activity while reducing the number of glial cells, adjusting the metabolism level of monoamine neurotransmitters, and lowering inflammation and oxidative stress levels. Subsequently, a rapid screening method for drug-containing brain tissue was further constructed, and five candidate components that can cross the blood–brain barrier and bind to MAO-B were screened and submitted for biological activity evaluation and inhibition mechanism research. In summary, we discovered 2′-acetylacteoside as a promising and reversible mixed natural MAO-B inhibitor in TC and developed a rapid screening method for screening central nervous system drugs with blood–brain barrier permeability characteristics, providing potential candidates and an effective screening strategy for neurodegenerative diseases.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"15 24","pages":"4544–4558 4544–4558"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acschemneuro.4c00608","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigated the role of total glycosides of Cistanche deserticola (TC) in MPTP-induced neuronal injury. Further, we screened potential inhibitory components of monoamine oxidase B (MAO-B). The study results indicate that TC may improve movement disorders and apoptosis of dopamine (DA) neurons by inhibiting MAO-B activity while reducing the number of glial cells, adjusting the metabolism level of monoamine neurotransmitters, and lowering inflammation and oxidative stress levels. Subsequently, a rapid screening method for drug-containing brain tissue was further constructed, and five candidate components that can cross the blood–brain barrier and bind to MAO-B were screened and submitted for biological activity evaluation and inhibition mechanism research. In summary, we discovered 2′-acetylacteoside as a promising and reversible mixed natural MAO-B inhibitor in TC and developed a rapid screening method for screening central nervous system drugs with blood–brain barrier permeability characteristics, providing potential candidates and an effective screening strategy for neurodegenerative diseases.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信