Unveiling the Dual Potential of the MoS2@VS2 Nanocomposite as an Efficient Electrocatalyst for Hydrogen and Oxygen Evolution Reactions

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Anju J S, Levna Chacko, Sruthi T, Gopika P, Vincent Mathew and P M Aneesh*, 
{"title":"Unveiling the Dual Potential of the MoS2@VS2 Nanocomposite as an Efficient Electrocatalyst for Hydrogen and Oxygen Evolution Reactions","authors":"Anju J S,&nbsp;Levna Chacko,&nbsp;Sruthi T,&nbsp;Gopika P,&nbsp;Vincent Mathew and P M Aneesh*,&nbsp;","doi":"10.1021/acsaem.4c0250410.1021/acsaem.4c02504","DOIUrl":null,"url":null,"abstract":"<p >Clean and reliable energy sources are essential amidst growing environmental concerns and impending energy shortages. Creating efficient and affordable catalysts for water splitting is a challenging yet viable option for renewable energy storage. Traditional platinum-based catalysts, while highly active, are quite expensive. Our study introduces two-dimensional (2D) MoS<sub>2</sub>@VS<sub>2</sub> nanocomposites, developed using hydrothermal technique, as a bifunctional catalyst for the electrolysis of water into valuable products. Structural studies revealed the formation of MoS<sub>2</sub>@VS<sub>2</sub> nanocomposites with a nanoflake-like structure, where MoS<sub>2</sub> nanosheets grow on the VS<sub>2</sub> surface. This 2D-based electrocatalyst demonstrated exceptional reaction kinetics, with low overpotentials of 265 mV for the hydrogen evolution reaction (HER) and 300 mV for the oxygen evolution reaction (OER) at 10 mA/cm<sup>2</sup>. Furthermore, the electrocatalyst displayed small Tafel slopes of 65 mV/dec and 103 mV/dec for HER and OER, respectively, along with excellent stability. The unprecedented catalytic activity stems from the synergistic effect between semiconducting MoS<sub>2</sub> and metallic VS<sub>2</sub>. Density functional theory calculations confirmed that this synergy enhances the electrical conductivity, facilitating efficient electron transfer during the reaction and providing an abundance of exposed active sites. These results mold MoS<sub>2</sub>@VS<sub>2</sub> nanocomposites as promising electrocatalysts for overall water splitting, paving the way for sustainable energy future.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"7 23","pages":"11184–11194 11184–11194"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02504","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Clean and reliable energy sources are essential amidst growing environmental concerns and impending energy shortages. Creating efficient and affordable catalysts for water splitting is a challenging yet viable option for renewable energy storage. Traditional platinum-based catalysts, while highly active, are quite expensive. Our study introduces two-dimensional (2D) MoS2@VS2 nanocomposites, developed using hydrothermal technique, as a bifunctional catalyst for the electrolysis of water into valuable products. Structural studies revealed the formation of MoS2@VS2 nanocomposites with a nanoflake-like structure, where MoS2 nanosheets grow on the VS2 surface. This 2D-based electrocatalyst demonstrated exceptional reaction kinetics, with low overpotentials of 265 mV for the hydrogen evolution reaction (HER) and 300 mV for the oxygen evolution reaction (OER) at 10 mA/cm2. Furthermore, the electrocatalyst displayed small Tafel slopes of 65 mV/dec and 103 mV/dec for HER and OER, respectively, along with excellent stability. The unprecedented catalytic activity stems from the synergistic effect between semiconducting MoS2 and metallic VS2. Density functional theory calculations confirmed that this synergy enhances the electrical conductivity, facilitating efficient electron transfer during the reaction and providing an abundance of exposed active sites. These results mold MoS2@VS2 nanocomposites as promising electrocatalysts for overall water splitting, paving the way for sustainable energy future.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信