Mengke Xu, Yuxuan Hu, Jiayan Wu, Jing Liu and Kanyi Pu*,
{"title":"Sonodynamic Nano-LYTACs Reverse Tumor Immunosuppressive Microenvironment for Cancer Immunotherapy","authors":"Mengke Xu, Yuxuan Hu, Jiayan Wu, Jing Liu and Kanyi Pu*, ","doi":"10.1021/jacs.4c1302210.1021/jacs.4c13022","DOIUrl":null,"url":null,"abstract":"<p >Extracellular and transmembrane proteins, which account for the products of approximately 40% of all protein-encoding genes in tumors, play a crucial role in shaping the tumor immunosuppressive microenvironment (TIME). While protein degradation therapy has been applied to membrane proteins of cancer cells, it has rarely been extended to immune cells. We herein report a polymeric nanolysosome targeting chimera (nano-LYTAC) that undergoes membrane protein degradation on M2 macrophages and generates a sonodynamic effect for combinational cancer immunotherapy. Nano-LYTAC is found to have higher degradation efficacy to the interleukin 4 receptor (IL-4R) compared to traditional inhibitors. More importantly, it is revealed that the effect of nano-LYTAC on the function of the M2 macrophage is concentration-dependent: downregulating CD206 expression and interleukin 10 (IL-10) secretion from M2 macrophages at low concentration, while triggering their apoptosis at high concentration. Moreover, nano-LYTAC is found to possess long tumor retention (>48 h), allowing for multiple sonodynamic treatments with a single dose. Such a synergistic sonodynamic immunotherapy mediated by nano-LYTAC effectively reprograms the TIME via inhibiting the functions of M2 macrophages and regulatory T cells (Tregs), as well as promoting the maturation of dendritic cells (DCs) and tumor infiltration of T effector cells (Teffs), completely suppressing tumor growth, inhibiting pulmonary metastasis, and preventing recurrence under preclinical animal models.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 50","pages":"34669–34680 34669–34680"},"PeriodicalIF":15.6000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c13022","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Extracellular and transmembrane proteins, which account for the products of approximately 40% of all protein-encoding genes in tumors, play a crucial role in shaping the tumor immunosuppressive microenvironment (TIME). While protein degradation therapy has been applied to membrane proteins of cancer cells, it has rarely been extended to immune cells. We herein report a polymeric nanolysosome targeting chimera (nano-LYTAC) that undergoes membrane protein degradation on M2 macrophages and generates a sonodynamic effect for combinational cancer immunotherapy. Nano-LYTAC is found to have higher degradation efficacy to the interleukin 4 receptor (IL-4R) compared to traditional inhibitors. More importantly, it is revealed that the effect of nano-LYTAC on the function of the M2 macrophage is concentration-dependent: downregulating CD206 expression and interleukin 10 (IL-10) secretion from M2 macrophages at low concentration, while triggering their apoptosis at high concentration. Moreover, nano-LYTAC is found to possess long tumor retention (>48 h), allowing for multiple sonodynamic treatments with a single dose. Such a synergistic sonodynamic immunotherapy mediated by nano-LYTAC effectively reprograms the TIME via inhibiting the functions of M2 macrophages and regulatory T cells (Tregs), as well as promoting the maturation of dendritic cells (DCs) and tumor infiltration of T effector cells (Teffs), completely suppressing tumor growth, inhibiting pulmonary metastasis, and preventing recurrence under preclinical animal models.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.