Elin Dypvik Sødahl, Jesús Carrete, Georg K. H. Madsen, Kristian Berland
{"title":"Dynamical Disorder in the Mesophase Ferroelectric HdabcoClO4: A Machine-Learned Force Field Study","authors":"Elin Dypvik Sødahl, Jesús Carrete, Georg K. H. Madsen, Kristian Berland","doi":"10.1021/acs.jpcc.4c06615","DOIUrl":null,"url":null,"abstract":"Hybrid molecular ferroelectrics with orientationally disordered mesophases offer significant promise as lead-free alternatives to traditional inorganic ferroelectrics owing to properties such as room temperature ferroelectricity, low-energy synthesis, malleability, and potential for multiaxial polarization. The ferroelectric molecular salt HdabcoClO<sub>4</sub> is of particular interest due to its ultrafast ferroelectric room-temperature switching. However, so far, there is limited understanding of the nature of dynamical disorder arising in these compounds. Here, we employ the neural network NeuralIL to train a machine-learned force field (MLFF) with training data generated using density functional theory. The resulting MLFF-MD simulations exhibit phase transitions and thermal expansion in line with earlier reported experimental results, for both a low-temperature phase transition coinciding with the orientational disorder of ClO<sub>4</sub><sup>–</sup> and the onset of rotation of both Hdabco<sup>+</sup> and ClO<sub>4</sub><sup>–</sup> in a high-temperature phase transition. We also find proton transfer even in the low-temperature phase, which increases with temperature and leads to associated proton disorder as well as the onset of disorder in the direction of the hydrogen-bonded chains.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"30 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c06615","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hybrid molecular ferroelectrics with orientationally disordered mesophases offer significant promise as lead-free alternatives to traditional inorganic ferroelectrics owing to properties such as room temperature ferroelectricity, low-energy synthesis, malleability, and potential for multiaxial polarization. The ferroelectric molecular salt HdabcoClO4 is of particular interest due to its ultrafast ferroelectric room-temperature switching. However, so far, there is limited understanding of the nature of dynamical disorder arising in these compounds. Here, we employ the neural network NeuralIL to train a machine-learned force field (MLFF) with training data generated using density functional theory. The resulting MLFF-MD simulations exhibit phase transitions and thermal expansion in line with earlier reported experimental results, for both a low-temperature phase transition coinciding with the orientational disorder of ClO4– and the onset of rotation of both Hdabco+ and ClO4– in a high-temperature phase transition. We also find proton transfer even in the low-temperature phase, which increases with temperature and leads to associated proton disorder as well as the onset of disorder in the direction of the hydrogen-bonded chains.
期刊介绍:
The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.