{"title":"Dissociation of Adsorbates via Electronic Energy Transfer from Aromatic Thin Films","authors":"Erik Jensen","doi":"10.1039/d4cp03810j","DOIUrl":null,"url":null,"abstract":"Photofragment translational spectroscopy has been used to characterize the energetics and the cross sections for photodissociation of CH<small><sub>3</sub></small>I and CF<small><sub>3</sub></small>I adsorbed on thin films of a variety of aromatic molecules, initiated by near-UV light. Thin films (nominally 10 monolayers) of benzene, five substituted benzenes and two naphthalenes have been employed to study systematic changes in the photochemical activity. Illumination of these systems with 248nm light is found to result in a dissociation process for the CH<small><sub>3</sub></small>I and CF<small><sub>3</sub></small>I mediated by initial absorption in the aromatic thin film, followed by electronic energy transfer (EET) to the dissociating species. The effective cross sections for dissociation are found to be substantially increased via this mechanism (from 1.8x--20x), amounts differing depending on the aromatic molecule thin film used, and is connected to the aromatic photabsorption profile and the particular excited states being accessed. Distinctive translational energy distributions for the CH<small><sub>3</sub></small> and CF<small><sub>3</sub></small> photofragments are found to vary systematically for the different aromatic molecule thin film used, and are related to the energy of the lowest electronic excited singlet state of the aromatic molecule. The CH<small><sub>3</sub></small> and CF<small><sub>3</sub></small> photofragment kinetic energy distributions found for the aromatic thin films suggest that the dissociation occurs via EET to the <small><sup>3</sup></small>Q<small><sub>1</sub></small> excited state of CH<small><sub>3</sub></small>I and CF<small><sub>3</sub></small>I.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"23 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cp03810j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Photofragment translational spectroscopy has been used to characterize the energetics and the cross sections for photodissociation of CH3I and CF3I adsorbed on thin films of a variety of aromatic molecules, initiated by near-UV light. Thin films (nominally 10 monolayers) of benzene, five substituted benzenes and two naphthalenes have been employed to study systematic changes in the photochemical activity. Illumination of these systems with 248nm light is found to result in a dissociation process for the CH3I and CF3I mediated by initial absorption in the aromatic thin film, followed by electronic energy transfer (EET) to the dissociating species. The effective cross sections for dissociation are found to be substantially increased via this mechanism (from 1.8x--20x), amounts differing depending on the aromatic molecule thin film used, and is connected to the aromatic photabsorption profile and the particular excited states being accessed. Distinctive translational energy distributions for the CH3 and CF3 photofragments are found to vary systematically for the different aromatic molecule thin film used, and are related to the energy of the lowest electronic excited singlet state of the aromatic molecule. The CH3 and CF3 photofragment kinetic energy distributions found for the aromatic thin films suggest that the dissociation occurs via EET to the 3Q1 excited state of CH3I and CF3I.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.