Chatura Perera, Ethan Ross, Yang Liu, Arthur Suits, Hua Guo
{"title":"State-to-state scattering of highly vibrationally excited NO with argon at collision energies over 1 eV","authors":"Chatura Perera, Ethan Ross, Yang Liu, Arthur Suits, Hua Guo","doi":"10.1039/d4cp04259j","DOIUrl":null,"url":null,"abstract":"We present state-to-state differential cross sections for rotationally inelastic collisions of vibrationally excited NO X2Π (ν = 9) with Ar using a near-counterpropagating molecular beam geometry. These were obtained using the stimulated emission pumping technique coupled with velocity map imaging. Collision energies well over ~1 eV were achieved and rotational excitations up to ~ Δj = 60 recorded for the first time for inelastic collisions. This allowed us to investigate scattering of a diatomic molecule in a 2Π state which is initially well described by Hund’s case (a) into final states well described by Hund’s case (b) as the rotational level splitting becomes larger than the spin-orbit splitting. Differential cross sections for both parity-changing and parity-conserving collisions exhibit very similar structures at the high collision energies. Quantum scattering calculations have been carried out to obtain approximate integral cross sections, which confirm the high rotational excitation. These studies will take the arena of rotationally inelastic collisions to a new regime while providing insight into dynamics in extreme non-equilibrium conditions. Furthermore, these present a unique challenge to both quantum and quasiclassical scattering calculations to validate the methods and the potential energy surfaces used to assess their applicability in extreme conditions.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"148 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cp04259j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We present state-to-state differential cross sections for rotationally inelastic collisions of vibrationally excited NO X2Π (ν = 9) with Ar using a near-counterpropagating molecular beam geometry. These were obtained using the stimulated emission pumping technique coupled with velocity map imaging. Collision energies well over ~1 eV were achieved and rotational excitations up to ~ Δj = 60 recorded for the first time for inelastic collisions. This allowed us to investigate scattering of a diatomic molecule in a 2Π state which is initially well described by Hund’s case (a) into final states well described by Hund’s case (b) as the rotational level splitting becomes larger than the spin-orbit splitting. Differential cross sections for both parity-changing and parity-conserving collisions exhibit very similar structures at the high collision energies. Quantum scattering calculations have been carried out to obtain approximate integral cross sections, which confirm the high rotational excitation. These studies will take the arena of rotationally inelastic collisions to a new regime while providing insight into dynamics in extreme non-equilibrium conditions. Furthermore, these present a unique challenge to both quantum and quasiclassical scattering calculations to validate the methods and the potential energy surfaces used to assess their applicability in extreme conditions.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.