Metal-organic frameworks generated from oligomeric ligands with functionalized tethers

IF 7.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hyunyong Kim, Seth M Cohen
{"title":"Metal-organic frameworks generated from oligomeric ligands with functionalized tethers","authors":"Hyunyong Kim, Seth M Cohen","doi":"10.1039/d4sc06666a","DOIUrl":null,"url":null,"abstract":"Metal-organic frameworks (MOFs) can be prepared from oligomeric organic ligands to prepare materials referred to as oligoMOFs. Studies of oligoMOFs are relatively limited, with most existing reports focused on fundamental structure-property relationships. In this report, functional groups, such as terminal alkynes and pyridine groups, are installed on the tether between 1,4-benzene dicarboxylic acid (H2bdc) groups of the dimer ligands. It was found that the position of the pyridine donor atom had pronounced effects on the synthesis and structure of Zn(II)-based isoreticular MOFs (IRMOF-1 analog, oligoIRMOF). Importantly, simple H2bdc ligands with pendant pyridine groups (i.e., not part of an dimeric ligand), were unable to produce crystalline phases or produced new MOF phases, showing the importance of the oligomeric ligand in directing structure. Dimeric ligands with two H2bdc groups and a terminal alkyne produced a crystalline and porous oligoIRMOF that enables postsynthetic modification (PSM) via ‘click’ chemistry to introduce other functional groups into the pores of the material. This oligoIRMOF could be cross-linked using reagents containing multiple azide functional sites. Taken together, these studies are among the first examples of oligoMOFs with functionalized tethers and demonstrate the versatility, utility, and unique opportunities for new chemistry provided by oligoMOFs.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"23 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sc06666a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal-organic frameworks (MOFs) can be prepared from oligomeric organic ligands to prepare materials referred to as oligoMOFs. Studies of oligoMOFs are relatively limited, with most existing reports focused on fundamental structure-property relationships. In this report, functional groups, such as terminal alkynes and pyridine groups, are installed on the tether between 1,4-benzene dicarboxylic acid (H2bdc) groups of the dimer ligands. It was found that the position of the pyridine donor atom had pronounced effects on the synthesis and structure of Zn(II)-based isoreticular MOFs (IRMOF-1 analog, oligoIRMOF). Importantly, simple H2bdc ligands with pendant pyridine groups (i.e., not part of an dimeric ligand), were unable to produce crystalline phases or produced new MOF phases, showing the importance of the oligomeric ligand in directing structure. Dimeric ligands with two H2bdc groups and a terminal alkyne produced a crystalline and porous oligoIRMOF that enables postsynthetic modification (PSM) via ‘click’ chemistry to introduce other functional groups into the pores of the material. This oligoIRMOF could be cross-linked using reagents containing multiple azide functional sites. Taken together, these studies are among the first examples of oligoMOFs with functionalized tethers and demonstrate the versatility, utility, and unique opportunities for new chemistry provided by oligoMOFs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信