CF3-Functionalized Side Chains in Nonfullerene Acceptors Promote Electrostatic Interactions for Highly Efficient Organic Solar Cells

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yongjoon Cho, Zhe Sun, Guoping Li, Dayong Zhang, Sangjin Yang, Tobin J. Marks, Changduk Yang, Antonio Facchetti
{"title":"CF3-Functionalized Side Chains in Nonfullerene Acceptors Promote Electrostatic Interactions for Highly Efficient Organic Solar Cells","authors":"Yongjoon Cho, Zhe Sun, Guoping Li, Dayong Zhang, Sangjin Yang, Tobin J. Marks, Changduk Yang, Antonio Facchetti","doi":"10.1021/jacs.4c13471","DOIUrl":null,"url":null,"abstract":"The advent of next-generation nonfullerene acceptors (NFAs) has propelled major advances in organic solar cells (OSCs). Here we report an NFA design incorporating CF<sub>3</sub>-terminated side chains having varying <i>N</i>-(CH<sub>2</sub>)<sub>n</sub>-CF<sub>3</sub> linker lengths (<i>n</i> = 1, 2, and 3) which introduce new intermolecular interactions, hence strong modulation of the photovoltaic response. We report a systematic comparison and contrast characterization of this NFA series with a comprehensive set of chemical/physical techniques versus the heavily studied third-generation NFA, Y6, revealing distinctive and beneficial properties of this new NFA series. Single-crystal diffraction analyses reveal unusual two-dimensional mesh-like crystal structures, featuring strong interactions between the side chain CF<sub>3</sub>-terminal and NFA core F substituents. These atomistic and morphological features contribute to enhanced charge mobility and significantly enhanced photovoltaic performance. We show that varying the CF<sub>3</sub>-terminated side chain linker length strongly modulates light harvesting efficiency as well as charge recombination and the photovoltaic bandgap. The CF<sub>3</sub>-(CH<sub>2</sub>)<sub>2</sub>-based OSC demonstrates the most balanced performance metrics, achieving a remarkable 19.08% power conversion efficiency and an exceptional 80.09% fill-factor. These results imply that introducing CF<sub>3</sub>-terminated side chains into other OSC conjugated constituents may accelerate next-generation solar cell development.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"27 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c13471","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The advent of next-generation nonfullerene acceptors (NFAs) has propelled major advances in organic solar cells (OSCs). Here we report an NFA design incorporating CF3-terminated side chains having varying N-(CH2)n-CF3 linker lengths (n = 1, 2, and 3) which introduce new intermolecular interactions, hence strong modulation of the photovoltaic response. We report a systematic comparison and contrast characterization of this NFA series with a comprehensive set of chemical/physical techniques versus the heavily studied third-generation NFA, Y6, revealing distinctive and beneficial properties of this new NFA series. Single-crystal diffraction analyses reveal unusual two-dimensional mesh-like crystal structures, featuring strong interactions between the side chain CF3-terminal and NFA core F substituents. These atomistic and morphological features contribute to enhanced charge mobility and significantly enhanced photovoltaic performance. We show that varying the CF3-terminated side chain linker length strongly modulates light harvesting efficiency as well as charge recombination and the photovoltaic bandgap. The CF3-(CH2)2-based OSC demonstrates the most balanced performance metrics, achieving a remarkable 19.08% power conversion efficiency and an exceptional 80.09% fill-factor. These results imply that introducing CF3-terminated side chains into other OSC conjugated constituents may accelerate next-generation solar cell development.

Abstract Image

非富勒烯受体中cf3功能化侧链促进了高效有机太阳能电池的静电相互作用
下一代非富勒烯受体(nfa)的出现推动了有机太阳能电池(OSCs)的重大进展。在这里,我们报道了一种NFA设计,其中包含具有不同N-(CH2) N- cf3连接体长度(N = 1、2和3)的cf3端侧链,引入了新的分子间相互作用,从而对光伏响应进行了强调制。我们报告了一个系统的比较和对比的特征与一套全面的化学/物理技术的NFA系列与经过大量研究的第三代NFA, Y6,揭示了这个新的NFA系列的独特和有益的特性。单晶衍射分析显示了不寻常的二维网状晶体结构,其侧链cf3端与NFA核心F取代基之间存在强相互作用。这些原子和形态特征有助于增强电荷迁移率和显著提高光伏性能。研究表明,改变端cf3侧链连接剂的长度可以有效地调节光收集效率、电荷重组和光伏带隙。基于CF3-(CH2)2的OSC表现出最平衡的性能指标,实现了19.08%的功率转换效率和80.09%的填充因子。这些结果表明,在其他OSC共轭组分中引入cf3端侧链可能会加速下一代太阳能电池的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信