Improved Upper Bound for the Size of a Trifferent Code

IF 1 2区 数学 Q1 MATHEMATICS
Siddharth Bhandari, Abhishek Khetan
{"title":"Improved Upper Bound for the Size of a Trifferent Code","authors":"Siddharth Bhandari, Abhishek Khetan","doi":"10.1007/s00493-024-00130-2","DOIUrl":null,"url":null,"abstract":"<p>A subset <span>\\(\\mathcal {C}\\subseteq \\{0,1,2\\}^n\\)</span> is said to be a <i>trifferent</i> code (of block length <i>n</i>) if for every three distinct codewords <span>\\(x,y, z \\in \\mathcal {C}\\)</span>, there is a coordinate <span>\\(i\\in \\{1,2,\\ldots ,n\\}\\)</span> where they all differ, that is, <span>\\(\\{x(i),y(i),z(i)\\}\\)</span> is same as <span>\\(\\{0,1,2\\}\\)</span>. Let <i>T</i>(<i>n</i>) denote the size of the largest trifferent code of block length <i>n</i>. Understanding the asymptotic behavior of <i>T</i>(<i>n</i>) is closely related to determining the zero-error capacity of the (3/2)-channel defined by Elias (IEEE Trans Inform Theory 34(5):1070–1074, 1988), and is a long-standing open problem in the area. Elias had shown that <span>\\(T(n)\\le 2\\times (3/2)^n\\)</span> and prior to our work the best upper bound was <span>\\(T(n)\\le 0.6937 \\times (3/2)^n\\)</span> due to Kurz (Example Counterexample 5:100139, 2024). We improve this bound to <span>\\(T(n)\\le c \\times n^{-2/5}\\times (3/2)^n\\)</span> where <i>c</i> is an absolute constant.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"36 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00130-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A subset \(\mathcal {C}\subseteq \{0,1,2\}^n\) is said to be a trifferent code (of block length n) if for every three distinct codewords \(x,y, z \in \mathcal {C}\), there is a coordinate \(i\in \{1,2,\ldots ,n\}\) where they all differ, that is, \(\{x(i),y(i),z(i)\}\) is same as \(\{0,1,2\}\). Let T(n) denote the size of the largest trifferent code of block length n. Understanding the asymptotic behavior of T(n) is closely related to determining the zero-error capacity of the (3/2)-channel defined by Elias (IEEE Trans Inform Theory 34(5):1070–1074, 1988), and is a long-standing open problem in the area. Elias had shown that \(T(n)\le 2\times (3/2)^n\) and prior to our work the best upper bound was \(T(n)\le 0.6937 \times (3/2)^n\) due to Kurz (Example Counterexample 5:100139, 2024). We improve this bound to \(T(n)\le c \times n^{-2/5}\times (3/2)^n\) where c is an absolute constant.

如果对于每三个不同的编码词(x,y、z)中,有一个坐标(i/in \{1,2,\ldots ,n/})它们都不同,也就是说,({x(i),y(i),z(i))与({0,1,2})相同。了解 T(n) 的渐近行为与确定 Elias 定义的 (3/2)-channel 的零误码容量密切相关(IEEE Trans Inform Theory 34(5):1070-1074, 1988),这也是该领域一个长期未决的问题。埃利亚斯证明了(T(n))是(3/2)^n()的2倍,而在我们的研究之前,库尔兹(Example Counterexample 5:100139, 2024)提出的最佳上界是(T(n))是(3/2)^n()的0.6937倍。我们将这个界限改进为 \(T(n)\le c \times n^{-2/5}\times (3/2)^n\) 其中 c 是一个绝对常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信